Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 497-504    DOI: 10.11900/0412.1961.2015.00331
  论文 本期目录 | 过刊浏览 |
微量元素Bi对Al-Pb合金凝固过程及显微组织的影响*
孙倩1,2,江鸿翔1,2,赵九洲1,2()
1 中国科学院金属研究所, 沈阳 110016
2 中国科学技术大学材料科学与工程学院, 沈阳 110016
EFFECT OF MICRO-ALLOYING ELEMENT Bi ON SOLIDIFICATION AND MICROSTRUCTURE OF Al-Pb ALLOY
Qian SUN1,2,Hongxiang JIANG1,2,Jiuzhou ZHAO1,2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
全文: PDF(985 KB)   HTML
  
摘要: 

实验研究了微量元素Bi对Al-Pb合金凝固过程和显微组织的影响, 发现微量元素Bi能显著细化Al-Pb合金凝固组织中的富Pb相粒子, 细化效果随着Al-Pb合金Pb含量的增加而增强. 分析了微量元素Bi对Al-Pb合金液-液相变过程的影响机理, 模拟计算了微量元素Bi作用下Al-Pb合金凝固组织形成过程. 结果表明, 微量元素Bi减小Al-Pb合金液-液相变过程中液相间的界面能, 提升了富Pb相液滴的形核率, 促进富Pb相液滴的细化和Al-Pb合金弥散型凝固组织的形成.

关键词 微量元素偏晶合金界面能凝固组织    
Abstract

Monotectic alloys are characterized by a miscibility gap in the liquid state. Many of them have great potentials to be used in industry. For example, alloys based on Cu-Pb and Al-Pb are good candidates to be used as advanced bearing materials if the soft Pb phase is dispersed in the Al or Cu matrix. Cu-Cr alloy is a high-strength, high conductivity material and Cu-Co alloy is an excellent magneto-resistive material, etc.. However, when a homogeneous monotectic alloy melt is cooled into the miscibility gap, it will transform into two liquids. The liquid-liquid decomposition generally causes the formation of a phase segregated microstructure. In recent years, considerable efforts have been made to investigate the solidification behavior of monotectic alloys. A lot of experiments have been carried out under microgravity conditions in space as well as under the gravitational conditions on the earth. The solidification behaviors of monotectic alloys under the conventional and rapid solidification conditions as well as the effect of external fields, such as electric current, magnetic field etc., are investigated. Models describing the solidification process have been built and the microstructure formations under different conditions have been calculated. It has been demonstrated that the microstructure evolution during cooling an alloy in the miscibility gap is a result of the concurrent actions of the nucleation, growth, Ostwald ripening and motions of the dispersed phase droplets. The nucleation of the dispersed phase droplets has a dominant influence on the solidification microstructure of monotectic alloys. In this work, solidification experiments were carried out to investigate the effect of micro-alloying element Bi on the solidification of Al-Pb alloys. The experimental results demonstrate that micro-alloying element Bi can cause an obvious refinement of the Pb-rich particles. The refining effect increases with the increase of the Pb content of Al-Pb alloys. The affecting mechanism of micro-alloying element Bi on the solidification process of Al-Pb alloys was analyzed. The microstructure formation process was calculated. The numerical results indicate that the addition of micro-alloying element Bi causes a reduction in the interfacial energy between the two liquid phases and, thus, enhances the nucleation rate of the Pb-rich droplets and promotes the formation of Al-Pb alloys with a well-dispersed microstructure.

Key wordsmicro-alloying element    monotectic alloy    interfacial energy    solidification microstructure
收稿日期: 2015-06-26     
基金资助:*国家自然科学基金项目51271185和51471173, 以及中国载人航天工程项目TGJZ800-2-RW024资助

引用本文:

孙倩,江鸿翔,赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响*[J]. 金属学报, 2016, 52(4): 497-504.
Qian SUN, Hongxiang JIANG, Jiuzhou ZHAO. EFFECT OF MICRO-ALLOYING ELEMENT Bi ON SOLIDIFICATION AND MICROSTRUCTURE OF Al-Pb ALLOY. Acta Metall Sin, 2016, 52(4): 497-504.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00331      或      https://www.ams.org.cn/CN/Y2016/V52/I4/497

图1  以10 mm/s速率连续凝固的Al-7%Pb-xBi (x=0, 0.05%, 0.10%)合金显微组织的SEM像
图2  以10 mm/s 速率连续凝固的Al-7%Pb-xBi合金中富Pb相粒子的二维尺寸分布
图3  Al-5%Pb-xBi和Al-9%Pb-xBi合金以10 mm/s速率连续凝固后显微组织的SEM像
图4  添加0.10%Bi条件下Al-Pb合金初生富Pb粒子二维平均直径随Pb含量的变化
图5  偏晶合金两液相间界面能、基体液相及弥散相液滴间成分差随温度变化示意图
图6  Al-Pb和Al-Bi合金两液相间界面能随温度的变化关系
图7  微量元素Bi富集表面区示意图和Bi在Al-Pb合金熔体内分布示意图
图8  凝固界面前沿熔体温度的实验值与计算值
图9  Al-5%Pb和Al-5%Pb-0.10%Bi合金凝固过程中富Pb相液滴形核率、数量密度及2D平均半径随位置的变化曲线
图10  Al-5%Pb和Al-5%Pb-0.10%Bi合金凝固过程中基体熔体过冷度和富Pb相液滴形核率随位置的变化曲线
[1] Sun Z B, Wang Y H, Guo J, Zhu Y M, Song X P, Zhu R H. Mater Sci Eng, 2007; A452-453: 411
[2] Zhou Z M, Wang Y P, Xia H, Zhan J.Mater Rev, 2008; 22(3): 44
[2] (周志明, 王亚平, 夏华, 詹捷. 材料导报, 2008; 22(3): 44)
[3] Kondo S, Yamamoto T, Yamamoto K, Morimura T, Hasaka M.J Appl Phys, 1993; 73: 2453
[4] Howe D P, Mee M, Torrance A A, Williams J D.Mater Sci Technol, 1991; 7: 330
[5] Pathak J P, Mohan S.Bull Mater Sci, 2003; 26: 315
[6] Mirkovi? D, Gr?bner J, Schmid-Fetzer R.Acta Mater, 2008; 56: 5214
[7] Kang Z Q, Wang E G, Zhang L, Li G M, Zuo X W, He J C.Rare Met, 2010; 34: 648
[7] (康智强, 王恩刚, 张林, 李贵茂, 左小伟, 赫冀成. 稀有金属, 2010; 34: 648)
[8] Cui H B, Li C Y, Wang K F, Guo J J.Hot Working Technol, 2009; 38(16): 12
[8] (崔红保, 历长云, 王狂飞, 郭景杰. 热加工工艺, 2009; 38(16): 12)
[9] He J, Zhao J Z, Ratke L.Acta Mater, 2006; 54: 1749
[10] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K.Science, 2002; 297: 990
[11] Zhao J Z, Gao L L, He J.Appl Phys Lett, 2005; 87: 131905
[12] Dai R, Zhang S G, Li Y B, Guo X, Li J G.J Alloys Compd, 2011; 509: 2289
[13] Liu N, Liu F, Chen Z, Yang G C, Yang C L, Zhou Y H.J Mater Sci Technol, 2012; 28: 622
[14] Dai R R, Zhang S G, Guo X, Li J G.Mater Lett, 2011; 65: 322
[15] Liu E Y, Chen T J, Bai Y P.Foundry Technol, 2010; 31: 17
[15] (刘二勇, 陈体军, 白亚平. 铸造技术, 2010; 31: 17)
[16] Rudrakshi G B, Srivastava V C, Pathak J P, Ojha S N.Mater Sci Eng, 2004; A383: 30
[17] Zhao J Z.Scr Mater, 2006; 54: 247
[18] Silva A P, Spinelli J E, Garcia A.J Alloys Compd, 2009; 475: 347
[19] Silva A P, Freitas E S, Goulart P R, Garcia A, Spinelli J E.J Mater Sci, 2012; 47: 5581
[20] Zhao J Z, Ratke L.Scr Mater, 2004; 50: 543
[21] Jiang H X, Zhao J Z.Chin Phys Lett, 2012; 29: 088104
[22] Zhang L, Wang E G, Zuo X W, He J C.Acta Metall Sin, 2008; 44: 165
[22] (张林, 王恩刚, 左小伟, 赫冀成. 金属学报, 2008; 44: 165)
[23] Li H L, Zhao J Z.Comput Mater Sci, 2009; 46: 1069
[24] Wang J, Zhong Y B, Wang C, Wang Z Q, Ren Z M, Xu K D.Acta Phys Sin, 2011; 60: 076101
[24] (王江, 钟云波, 汪超, 王志强, 任忠鸣, 徐匡迪. 物理学报, 2011; 60: 076101)
[25] Wang C P, Liu X J, Shi R P, Shen C, Wang Y Z, Ohnuma I, Kainuma R, Ishida K.Appl Phys Lett, 2007; 91: 141904
[26] Li H L, Zhao J Z.Appl Phys Lett, 2008; 92: 241902
[27] Kang Z Q, Wang E G, Zhang L, He J C.Chin J Mater Res, 2011; 25: 124
[27] (康智强, 王恩刚, 张林, 赫冀成. 材料研究学报, 2011; 25: 124)
[28] Zhou F M, Sun D K, Zhu M F.Acta Phys Sin, 2010; 59: 3394
[28] (周丰茂, 孙东科, 朱鸣芳. 物理学报, 2010; 59: 3394)
[29] Zhao J Z, Li H L, Zhang X F, He J, Ratke L.Int J Mater Res, 2009; 100: 46
[30] Zhao J Z, Li H L, Zhang X F, He J.Mater Lett, 2008; 62: 3779
[31] Zhao J Z, Li H L, Wang Q L, He J.Comput Mater Sci, 2008; 44: 400
[32] Jin G. Surfactant Chemistry.2nd Ed., Hefei: University of Science and Technology of China Press, 2008: 59
[32] (金谷. 表面物理化学. 第2版, 合肥: 中国科学技术大学出版社, 2008: 59)
[33] Ratke L, Diefenbach S.Mater Sci Eng, 1995; R15: 263
[34] Kaban I, K?hler M, Ratke L, Hoyer W, Mattern N, Eckert J, Greer A L.Acta Mater, 2011; 59: 6880
[35] Li H L, Zhao J Z, Zhang Q X, He J.Metall Mater Trans, 2008; 39A: 3308
[36] Zhao L, Zhao J Z.Metall Mater Trans, 2012; 43A: 5019
[37] Tao W Q. Numerical Heat Transfer.Xi'an: an Jiaotong University Press Xi'an Jiaotong University Press, 1988: 349
[37] (陶文铨. 数值传热学. 西安: 西安交通大学出版社, 1988: 349)
[38] Patankar S V, translated by Zhang Z. Numerical Heat Transfer and Fluid Flow. Beijing: Science Press, 1984: 27
[38] (Patankar S V著, 张政译. 传热与流体流动计算. 北京: 科学出版社, 1984: 27)
[39] Versteeg H K, Malalasekera W.An Introduction to Computational Fluid Dynamics: the Finite Volume Method. 2nd Ed., New York: Pearson Education Limited, 1995: 4
[40] Sommer F.Z Metallkd, 1996; 87: 865
[41] Yu S K, Sommer F, Predel B. Z Metallkd, 1996; 87: 574
[42] Beer S Z. Liquid Metals. New York: Marcel Dekker Inc,1972: 415
[43] Thompson C V, Spaepen F.Acta Metall,1983; 31: 2021
[44] Li H L.PhD Dissertation. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009
[44] (李海丽. 中国科学院金属研究所博士学位论文, 沈阳, 2009)
[1] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[2] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[3] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[4] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[5] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[6] 张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.
[7] 向雪梅, 赖玉香, 刘春辉, 陈江华. 微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变[J]. 金属学报, 2018, 54(9): 1273-1280.
[8] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[9] 坚增运, 徐涛, 许军锋, 朱满, 常芳娥. 熔体-结晶相固-液界面能的研究进展[J]. 金属学报, 2018, 54(5): 766-772.
[10] 赵九洲, 江鸿翔. 偏晶合金凝固过程研究进展[J]. 金属学报, 2018, 54(5): 682-700.
[11] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[12] 李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.
[13] 刘建学, 席文君, 李能, 李树杰. 界面能调控熔体中纳米颗粒分布铝热合成铁基ODS合金[J]. 金属学报, 2017, 53(8): 1011-1017.
[14] 张玉妥,陈波,刘奎,李殿中,李依依. 低偏析技术的发展[J]. 金属学报, 2017, 53(5): 559-566.
[15] 郭文营,胡小强,马晓平,李殿中. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响*[J]. 金属学报, 2016, 52(7): 769-777.