Please wait a minute...
金属学报  2013, Vol. 49 Issue (9): 1148-1152    DOI: 10.3724/SP.J.1037.2013.00289
  论文 本期目录 | 过刊浏览 |
强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响
刘印,刘铁,王强,王慧敏,王丽,赫冀成
东北大学材料电磁过程研究教育部重点实验室, 沈阳 110819
EFFECT OF HIGH MAGNETIC FIELD ON CRYSTAL ORIENTATION, MORPHOLOGY AND MAGNETOSTRICTION OF TbFe2 AND Tb0.27Dy0.73Fe1.95 ALLOYS DURING HEAT TREATMENT PROCESS
LIU Yin, LIU Tie, WANG Qiang, WANG Huimin, WANG Li, HE Jicheng
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University,Shenyang 110819
引用本文:

刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
LIU Yin, LIU Tie, WANG Qiang, WANG Huimin, WANG Li, HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON CRYSTAL ORIENTATION, MORPHOLOGY AND MAGNETOSTRICTION OF TbFe2 AND Tb0.27Dy0.73Fe1.95 ALLOYS DURING HEAT TREATMENT PROCESS[J]. Acta Metall Sin, 2013, 49(9): 1148-1152.

全文: PDF(1007 KB)  
摘要: 

研究了在11.5 T的磁场强度下, 强磁场热处理对稀土-铁基合金TbFe2Tb0.27Dy0.73Fe1.95的晶体取向、微观形貌及其磁致伸缩性能的影响. 结果表明, 强磁场退火不会改变合金的择优取向,但是取向度较退火前有显著提高. 2种样品的相组成均无变化,但11.5 T热处理使TbFe2样品中的富稀土相明显减少, 磁性相面积增大.强磁场热处理后, Tb0.27Dy0.73Fe1.95合金的磁致伸缩系数增幅较小,而TbFe2合金的磁致伸缩系数比无磁场样品有较大提高.

关键词 强磁场热处理稀土-铁基合金磁致伸缩择优取向    
Abstract

The rare-earth giant magnetostrictive materials are one kind of the most important functional materials now. The rare-earth giant magnetostrictive materials of TbFe2 and Tb0.27Dy0.73Fe1.95(R-Fe) alloys were firstly used in sonar system in military. Now, the applications of these two alloys have been developed widely in both industry and civil fields, such as magnetomechanical transducers, actuators, adaptive vibration control systems, and so on. The TbFe2 and Tb0.27Dy0.73Fe1.95 alloys both have the C15-type cubic Laves phase structure, which has strong magnetic anisotropy. This causes that the alloys exhibit different magnetostrictive properties along different crystal orientations. So, the preparation of high orientation degree magnetostrictive materials has a great of importance. In this work, it is predicted that the magnetostricive property of these two alloys can be enhanced with high magnetic field during heat treatment around their Curie and eutectic points. Therefore, a high magnetic field up to 11.5 T was imposed on these two kinds of R-Fe alloys during heat treatment at different temperatures in the experiments. Then the effects of high magnetic field on the crystal orientation, morphology and magnetostriction were analyzed in detail by XRD, metallographic microscope, and static resistance strain gauge. Also, the relationship between structure and property is discussed. The results showed that high magnetic field didn't change the orientation of the R-Fe alloys, but the orientation degree had a great improvement after heat treatment. The phase composition of the two alloys had no change. However, the heat treatment with a magnetic field up to 11.5 T distinctly reduced the rare-earth phase of TbFe2 and obviously increased the magnetic phase. In addition, the magnetostrictive property of TbFe2 alloy increased after the heat treatment with high magnetic field. But for Tb0.27Dy0.73Fe1.95 alloy, the magnetostriction was not obviously enhanced. The reason for the improvement of the magnetostriction is that the Zeeman energy caused by high magnetic field increased the total Gibbs free energy of the system, which made the random orientation in crystals orient along the <113> direction, and enhanced the magnetostriction of the R-Fe alloys.

 
Key wordshigh magnetic field heat treatment    R-Fe alloy    magnetostriction    preferred orientation
收稿日期: 2013-05-28     
基金资助:

国家自然科学基金项目51006020, 51174056, 国家重点基础研究发展计划项目2011CB612206和中央高校基本科研业务费项目N120409001, N120509001资助

作者简介: 刘印, 男, 1982年生, 博士生

[1] Clark A E, Belson H S.   Phys Lett, 1972; 42A: 160

[2] Clark A E, Cullen J R, McMasters O D, Callen E R.AIP Conf Proc, 1976; 29: 192
[3] Xu L H, Jiang C B, Xu H B.Appl Phys Lett, 2006; 89: 192507
[4] Jiang C B, Zhao Y, Xu L H, Xu H B.J Alloys Compd, 2004; 373: 167
[5] Zhang C S, Ma T Y, Qi R L, Mi Y.J Appl Phys, 2010; 108: 043908
[6] Liu T, Wang Q, Zhang H F, Wang K, Pang X J, He J C.J Alloys Compd, 2009; 469: 258
[7] Wang Q, Liu T, Gao A, Wang C J, Wei N, He J C. Scr Mater, 2007; 56: 1087
[8] Liu D H, Yu H P, Li C F.   Acta Metall Sin, 2012; 48: 519
(刘大海, 于海平, 李春峰. 金属学报, 2012; 48: 519)
[9] Liu T, Wang Q, Gao A, Zhang H W, He J C.J Alloys Compd, 2011; 509: 5822
[10] Shalyguina E E, Mukasheva M A, Abrosimova N M, Kozlovskii L, Tamanis E,Shalygin A N.  J Magn Magn Mater, 2006; 300: e367
[11] Liu T, Wang Q, Gao A, Zhang C, Li D G, He J C. J Alloys Compd, 2009; 481: 755
[12] Ma T Y, Jiang C B, Xu H B.  Appl Phys Lett, 2005; 86: 162505
[13] Li G J, Liu T, Wang Q, Zhang Y J, Cao Y Z, Du J J.Mater Lett, 2012; 69: 63
[14] Wang K, Wang Q, Wang C J, Wang E G, Liu C M, He J C. Mater Lett, 2008; 62: 1466
[15] Galloway N, Greennough R D, Schulze M P, Jenner A G I. J Magn Magn Mater, 1993; 119: 107
[16] Li D G, Wang Q, Liu T, Li G J, He J C.Mater Chem Phys, 2009; 117: 504
[17] Jiang C B, Zhao Y, Xu L H, Xu H B. J Alloys Compd, 2004; 373: 167
[18] Sadovskiy V D, Rodigin N M, Smirnov L V. Fiz Met Metalloved, 1961; 12: 131
[19] Wang K, Wang Q, Wang C J, Yuan Y, Liu C M, He J C.Philos Mag Lett, 2009; 89: 695
[20] Verhoeven J D, Ostenson J E, Gibson E D, McMasters O D.  J Appl Phys, 1989; 66: 772
[21] Jiang C B, Zhao Y, Xu H B.Acta Metall Sin, 2004; 40: 378
(蒋成保, 赵岩, 徐惠彬. 金属学报, 2004; 40: 378)
[22] Song J Y, Zhao X, Wang S J, Gong M L, Zuo L.Acta Metall Sin, 2008; 44: 1305
(宋建宇, 赵骧, 王守晶, 宫明龙, 左良. 金属学报, 2008; 44: 1305)
[23] Yuan Y, Wang Q, Iwai K, Li D G, Liu T, He J C.J Alloys Compd, 2013; 560: 127
[24] Chu W G, Fei W D, Yang D Z.  Acta Metall Sin, 1999; 35: 1253
(褚卫国, 费维栋, 杨德庄. 金属学报, 1999; 35: 1253)
[25] Chin T S, Hung M P, Tsai D S, Wu K F, Chang W C.J Appl Phys, 1988; 64: 5531
[1] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[2] 李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.
[3] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[4] 刘庆华,黄裕金,刘剑,胡侨丹,李建国. Ni-Fe-Ga-Co磁性形状记忆合金定向凝固稳定生长区的组织及择优取向[J]. 金属学报, 2013, 29(4): 391-398.
[5] 姚占全,赵增祺,江丽萍,郝宏波,吴双霞,张光睿,杨建东. 稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(1): 87-91.
[6] 李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.
[7] 崔跃 蒋成保 徐惠彬. Tb-Dy-Fe-Co合金本征磁致伸缩性能[J]. 金属学报, 2011, 47(2): 214-218.
[8] 陈立彪 朱小溪 李川 刘敬华 蒋成保 徐惠彬. Fe81Ga19合金<001>取向单晶生长及磁致伸缩性能[J]. 金属学报, 2011, 47(2): 169-172.
[9] 张昌盛 马天宇 严密 裴永茂 高旭 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械阻尼特性[J]. 金属学报, 2009, 45(6): 749-753.
[10] 朱小溪 张天丽 蒋成保. Fe72.5Ga27.5磁致伸缩合金动态机电耦合系数K33[J]. 金属学报, 2009, 45(4): 455-459.
[11] 贾傲 张天丽 孟皓 蒋成保. 粘结巨磁致伸缩颗粒复合材料的磁致伸缩性能及涡流损耗[J]. 金属学报, 2009, 45(12): 1473-1478.
[12] 高学绪 李纪恒 朱洁 包小倩 贾俊成 张茂才 . 气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能[J]. 金属学报, 2009, 45(10): 1267-1271.
[13] 李纪恒; 高学绪; 朱洁; 张茂才; 何承先 . 轧制Fe-Ga合金的织构及磁致伸缩[J]. 金属学报, 2008, 44(9): 1031-1034 .
[14] 章愫; 刘敬华; 蒋成保; 徐惠彬 . 熔体快淬法制备Fe81Ga19磁致伸缩合金[J]. 金属学报, 2008, 44(3): 361-364 .
[15] 许云伟; 马天宇; 张晶晶; 严密 . 反铁磁Fe1-xMnx(0.30≤x≥0.55) 合金的磁致伸缩[J]. 金属学报, 2008, 44(10): 1235-1237 .