Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 799-806    DOI: 10.11900/0412.1961.2015.00084
  本期目录 | 过刊浏览 |
强磁场下不同晶粒尺寸Fe薄膜生长模式演变及其对磁性能的影响*
杜娇娇,李国建(),王强,马永会,王慧敏,李萌萌
GROWTH MODE EVOLUTION AND SUBSEQUENT MAGNETIC PROPERTIES OF Fe FILMS WITH DIFFERENT GRAIN SIZES UNDER A HIGH MAGNETIC FIELD
Jiaojiao DU,Guojian LI(),Qiang WANG,Yonghui MA,Huimin WANG,Mengmeng LI
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819
全文: PDF(7509 KB)   HTML
摘要: 

采用强磁场下物理气相沉积的方法, 通过提高蒸发源温度获得晶粒尺寸逐渐降低的纳米晶Fe薄膜, 研究了强磁场对不同晶粒尺寸Fe薄膜生长和磁性能的影响. 结果表明, 当蒸发源温度为1440 ℃时, Fe薄膜的晶粒细小, 强磁场使薄膜从层状生长变成了柱状生长, 有效降低了薄膜缺陷. 当蒸发源温度为1400和1350 ℃时, Fe薄膜的晶粒较粗大, 强磁场不能改变其柱状生长方式, 但是却提高了柱的宽度. 强磁场提高了Fe薄膜的平均晶粒尺寸以及颗粒(由晶粒构成)尺寸、降低了薄膜表面粗糙度. 随着晶粒尺寸的降低, 强磁场提高Fe薄膜矫顽力、饱和磁化强度和剩磁比的能力增强.

关键词 强磁场Fe薄膜纳米晶柱状生长磁性能    
Abstract

In order to increase the magnetic properties and realize the essential applications in magnetic recording and spintronics devices, it is significant to control the growth mode and grain size of Fe films. In this work, the effects of a high magnetic field (HMF) on the growth and magnetic properties of Fe thin films with different grain sizes by using physics vapor deposition were explored. The decreased grain sizes are obtained by increasing the evaporation source temperatures. It is found that when the evaporation source temperature is 1440 ℃, the grains of film are fine. The growth mode is changed from layered to columnar by HMF. And HMF effectively reduces the defects of Fe film. When the evaporation source temperature is 1400 and 1350 ℃, the grains of films are large. HMF does not change the columnar growth mode of films. However, the width of columns is improved by a HMF. Additionally, HMF increases the average particle (composed of the grains) and grain size of Fe films with different grain sizes. And the surface roughness of all the films is remarkably reduced by a HMF. With the decrease of grain sizes, the ability of HMF on increasing the coercivity, saturation magnetization and squareness ratio of the Fe films is enhanced.

Key wordshigh magnetic field    Fe film    nanocrystalline    columnar growth    magnetic properties
    
基金资助:*国家自然科学基金项目51101034和51425401, 中央高校基本科研业务费项目N130509002和N140902001, 以及辽宁省教育厅科学技术研究一般项目L2014091资助

引用本文:

杜娇娇,李国建,王强,马永会,王慧敏,李萌萌. 强磁场下不同晶粒尺寸Fe薄膜生长模式演变及其对磁性能的影响*[J]. 金属学报, 2015, 51(7): 799-806.
Jiaojiao DU, Guojian LI, Qiang WANG, Yonghui MA, Huimin WANG, Mengmeng LI. GROWTH MODE EVOLUTION AND SUBSEQUENT MAGNETIC PROPERTIES OF Fe FILMS WITH DIFFERENT GRAIN SIZES UNDER A HIGH MAGNETIC FIELD. Acta Metall Sin, 2015, 51(7): 799-806.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00084      或      https://www.ams.org.cn/CN/Y2015/V51/I7/799

图1  不同条件下制备Fe薄膜的XRD谱
图2  无磁场下Fe薄膜的生长速率以及不同条件下制备的Fe薄膜的晶粒尺寸
图3  不同条件下制备的Fe薄膜的截面TEM像
图4  不同条件下制备的Fe薄膜的SEM像
图5  不同条件Fe薄膜的AFM像以及线粗糙度分析
图6  不同条件Fe薄膜的室温M-H曲线
图7  不同条件下制备的Fe薄膜当外场平行膜面时的饱和磁化强度Ms, 矫顽力Hc, 剩磁比和应变
[1] Brajpuriyaa R, Tripathi S, Sharma A, Shripathi T, Chaudhari S M. Eur Phys J, 2006; 51B: 131
[2] Tivakornsasithorn K, Alsmadi A M, Liu X, Leiner J C, Choi Y, Keavney D J, Eid K F, Dobrowolska M, Furdyna J K. J Appl Phys, 2013; 113: 133908
[3] Datta S, Das B. Appl Phys Lett, 1990; 56: 665
[4] Mitsuru O, Koher S, Masaaki F. J Appl Phys, 2013; 113: 17C117
[5] Ausanio G, Lannotti V, Amoruso S, Wang X, Aruta C, Arzeo M, Fittipaldi R, Vecchione A, Bruzzese R, Lanotte L. Appl Surf Sci, 2012; 258: 9337
[6] Chakravarty S, Jiang M, Tietze U, Lott D, Geue T, Stahn J, Schmidt H. Acta Mater, 2011; 59: 5568
[7] Ma Y W, Xu A X, Li X H, Zhang X P, Guilloux-Viry M, Pena O, Awaji S, Watanabe K. Appl Phys Lett, 2006; 89: 152505
[8] Appleby D J R, Ponon N K, Kwa K S K, Ganti S, Hannemann U, Petrov P K, Alford N M, O'Neill A. J Appl Phys, 2014; 116: 124105
[9] Masahiro H, Mizuhisa N, Daiyu K, Akio K, Yuji A. Jpn J Appl Phys, 2004; 43: 7337
[10] Kima K H, Leea J D, Leea J J, Ahna B Y, Kima H S, Shin Y W. Thin Solid Films, 2005; 483: 74
[11] He K, Ma L Y, Ma X C, Jia J F, Xue Q K. Appl Phys Lett, 2006; 88: 232503
[12] Wang L L, Wang X, Zheng W T, Ma N, Li H B, Guan Q F, Jin D H, Zong Z G. J Alloys Compd, 2007; 443: 43
[13] Wang Q, Liu Y, Liu T, Gao P F, Wang K, He J C. Appl Phys Lett, 2012; 101: 132406
[14] Li G J, Du J J, Wang H M, Wang Q, Ma Y H, He J C. Mater Lett, 2014; 133: 53
[15] Du J J, Li G J, Wang Q, Cao Y Z, Ma Y H, He J C. Nano, 2014; 9: 1450025
[16] Tahashi M, Sassa K, Hirabayashi I, Asai S. Mater Trans JIM, 2000; 41: 985
[17] Cao Y Z, Wang Q, Li G J, Du J J, Wu C, He J C. J Magn Magn Mater, 2013; 332: 38
[18] Zhang S X, Duan Z X, Zhang X P, Wang D L, Gao Z S, Han L, Ma Y W, Awaji S, Watanabe K. Appl Phys Express, 2012; 5: 041802
[19] Matsushima H, Nohira T, Ito Y. Electrochem Solid-State Lett, 2004; 7(8): C81
[20] Matsushima H, Fukunaka Y, Ito Y, Bund A, Plieth W. J Electroanal Chem, 2006; 587: 93
[21] Koza J, Uhlemann M, Gebert A, Schultz L. J Solid State Electrochem, 2008; 12: 181
[22] Matsushima H, Nohira T, Ito Y. J Solid State Electrochem, 2004; 8: 195
[23] Matsushima H, Fukunaka Y, Yasuda H, Kikuchi S. ISIJ Int, 2005; 45: 1001
[24] Wang Q, Cao Y Z, Li G J, Wang K, Du J J, He J C. Sci Adv Mater, 2013; 5: 1
[25] Mebarki M, Layadi A, Guittoum A, Benabas A, Ghebouli B, Saad M, Menni N. Appl Surf Sci, 2011; 257: 7025
[26] Chen M, Wei H L, Liu Z L, Yao K L. Acta Phys Sin, 2001; 50: 2446 (陈 敏, 魏合林, 刘祖黎, 姚凯伦. 物理学报, 2001; 50: 2446)
[27] Tang X D, Wang X F, Long Z H. Mech Eng, 2003; (6): 39 (汤旭东, 王小峰, 龙振湖. 机械工程师, 2003; (6): 39)
[28] Shi X W. Vacuum, 2013; 50(1): 23 (史新伟. 真空, 2013; 50(1): 23)
[29] Ma Y W, Xiao L Y, Yan L G. Chin Sci Bull, 2006; 51: 2944
[30] Jiang S T,Li W. Condensed Matter Physics of Magnetism. Beijing: Science Press, 2003: 211 (姜寿亭,李 卫. 凝聚态磁性物理. 北京: 科学出版社, 2003: 211)
[31] Qu Y. PhD Dissertation, Southeast University, Nanjing, 2003 (瞿 亚. 东南大学博士学位论文, 南京, 2003)
[32] Thomas S, Al-Harthi S H, Sakthikumar D, Al-Omari I A, Ramanujan R V, Yoshida Y. J Phys, 2008; 41D: 155009
[1] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[2] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[3] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[4] 梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
[5] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[6] 孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫. 各向异性稀土永磁薄膜的磁黏滞性[J]. 金属学报, 2018, 54(3): 457-462.
[7] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[8] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[9] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[10] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.
[11] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.
[12] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[13] 余建波, 侯渊, 张超, 杨志彬, 王江, 任忠鸣. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响[J]. 金属学报, 2017, 53(12): 1620-1626.
[14] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[15] 李维丹,谭晓华,任科智,刘洁,徐晖. Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*[J]. 金属学报, 2016, 52(5): 561-566.