Please wait a minute...
金属学报  2017, Vol. 53 Issue (12): 1620-1626    DOI: 10.11900/0412.1961.2017.00165
  本期目录 | 过刊浏览 |
静磁场对新型Co-Al-W基高温合金定向凝固组织的影响
余建波1(), 侯渊1, 张超2, 杨志彬2, 王江1, 任忠鸣1
1 上海大学省部共建高品质特殊钢冶金与制备国家重点实验室 上海市钢铁冶金新技术开发应用重点实验室 上海 200072
2 江苏科技大学张家港校区冶金与材料工程学院 张家港 215600
Effect of High Magnetic Field on the Microstructure in Directionally Solidified Co-Al-W Alloy
Jianbo YU1(), Yuan HOU1, Chao ZHANG2, Zhibin YANG2, Jiang WANG1, Zhongming REN1
1 State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200072, China
2 School of Metallurgical and Materials Engineering, Zhangjiagang Campus of Jiangsu University of Science and Technology, Zhangjiagang 215600, China
引用本文:

余建波, 侯渊, 张超, 杨志彬, 王江, 任忠鸣. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响[J]. 金属学报, 2017, 53(12): 1620-1626.
Jianbo YU, Yuan HOU, Chao ZHANG, Zhibin YANG, Jiang WANG, Zhongming REN. Effect of High Magnetic Field on the Microstructure in Directionally Solidified Co-Al-W Alloy[J]. Acta Metall Sin, 2017, 53(12): 1620-1626.

全文: PDF(10971 KB)   HTML
  
摘要: 

以新型Co-Al-W基高温合金为基础,进行了外加静磁场下定向凝固实验,考察了不同磁场强度对凝固组织形貌和偏析的影响。结果显示:在抽拉速率为5 μm/s时,施加纵向强磁场,诱发熔体流动,造成界面失稳,形成“斑状”偏析和游离碎晶;磁场不变(2 T),进一步增加抽拉速率时,边部的游离碎晶和“斑状”偏析组织减少,凝固界面变得平直;施加横向磁场时,诱发更强的界面前沿流动,偏析加剧,碎晶增多;增加偏析合金元素Ta时,偏析进一步加剧,造成过冷形核,诱发柱状晶向等轴晶转变(CET)。磁场下热电磁对流形成偏析,是造成CET的根本原因。

关键词 Co-Al-W合金强磁场定向凝固溶质偏析CET    
Abstract

Recently, a new Co-Al-W-based alloy with ordered L12 structure has been attracted much attention of researchers, these alloys have higher melting point than Ni-base superalloys with morphologically identical microstructure, but grain defect formation caused by thermosolutal convection has become an important problem for its application. Magnetic field is always applied to damp the convection which reduces the formation of defects. However, there are hitherto few papers to investigate the effect of magnetic field on grain defects during Co-Al-W-based alloy directional solidification. In this work, The effect of high magnetic field on the solidification structure and macrosegregation in directionally solidified Co-Al-W-based alloy was investigated. The results showed that the application of longitudinal magnetic field can induce convection and cause deformation of the solid-liquid interface shape, forming the macrosegregation and the stray grains in the mushy zone at the pulling rate of 5 μm/s. With the increase of pulling rate, the macrosegregation and the stray grains disappeared gradually at 2 T magnetic field. While the transverse magnetic field was applied, the macrosegregation became serious and the number of the stray grains increased. The macrosegregation further became more serious and the columnar-to-equiaxed transition was induced after adding the Ta element. The main reason of undercooling nucleation and columnar-to-equiaxed transition (CET) was the microsegregation induced by thermoelectric magnetic convention.

Key wordsCo-Al-W alloy    high magnetic field    directional solidification    macrosegregation    columnar-to-equiaxed transition
收稿日期: 2017-05-03     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目Nos.51404148、51690162和U1560202,上海商用航空发动机联合创新项目Nos;AR910和AR911及凝固技术国家重点实验室支持项目No.SKLSP201602
作者简介:

作者简介 余建波,男,1982年生,高级工程师

Alloy Co Al W Ta
Co-Al-W 70.2 3.5 26.3 -
Co-Al-W-Ta 65.8 3.4 25.6 5.2
表1  Co-Al-W基合金成分
图1  静磁场下Bridgman 定向凝固装置示意图
图2  抽拉速率为5 μm/s时,不同磁场强度下定向凝固Co-Al-W合金淬火固/液界面附近的微观组织
图3  纵向磁场强度为2 T时,不同抽拉速率下定向凝固Co-Al-W合金淬火固/液界面附近的微观组织
图4  抽拉速率为5 μm/s时,不同横向磁场强度下定向凝固Co-Al-W合金固/液界面附近的微观组织
图5  抽拉速率为5 μm/s时,不同纵向磁场强度下定向凝固Co-Al-W-Ta合金固/液界面附近的微观组织
图6  抽拉速率为100 μm/s时,不同纵向磁场强度下定向凝固Co-Al-W-Ta合金固/液界面附近的微观组织
图7  Co-Al-W合金铸态单晶偏析图谱及不同纵向磁场强度下定向凝固Co-Al-W和Co-Al-W-Ta合金中Al、W、Ta元素成分
图8  静磁场下定向凝固过程中CET的示意图
[1] Hunt J D.Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Mater. Sci. Eng., 1984, 65: 75
[2] Gandin C A, Rappaz M.Coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metall. Mater., 1994, 42: 2233
[3] Nastac L.Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J]. Acta Mater., 1999, 47: 4253
[4] Dong H B, Yang X L, Lee P D, et al.Simulation of equiaxed growth ahead of an advancing columnar front in directionally solidified Ni-based superalloys[J]. J. Mater. Sci., 2004, 39: 7207
[5] Dong H B, Lee P D.Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys[J]. Acta Mater., 2005, 53: 659
[6] Liu D R, Mangelinck-No?l N, Gandin C A, et al.Structures in directionally solidified Al-7wt.% Si alloys: Benchmark experiments under microgravity[J]. Acta Mater., 2014, 64: 253
[7] Spittle J A.Columnar to equiaxed grain transition in as solidified alloys[J]. Int. Mater. Rev., 2006, 51: 247
[8] Li X, Gagnoud A, Fautrelle Y, et al.Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Mater., 2012, 60: 3321
[9] Li X, Fautrelle Y, Zaidat K, et al.Columnar-to-equiaxed transitions in al-based alloys during directional solidification under a high magnetic field[J]. J. Cryst. Growth, 2010, 312: 267
[10] Li X, Ren Z M, Shen Y, et al.Effect of thermoelectric magnetic force on the array of dendrites during directional solidification of Al-Cu alloys in a high magnetic field[J]. Philos. Mag. Lett., 2012, 92: 675
[11] Li X, Fautrelle Y, Ren Z M.Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Mater., 2007, 55: 3803
[12] Li X, Gagnoud A, Fautrelle Y, et al.Effect of a transverse magnetic field on solidification structures in unmodified and Sr-modified Al-7wtpctSi alloys during directional solidification[J]. Metall. Mater. Trans., 2016, 47A: 1198
[13] Li X, Fautrelle Y, Ren Z M.Influence of an axial high magnetic field on the liquid-solid transformation in Al-Cu hypoeutectic alloys and on the microstructure of the solid[J]. Acta Mater., 2007, 55: 1377
[14] Li X, Gagnoud A, Ren Z M, et al.Investigation of thermoelectric magnetic convection and its effect on solidification structure during directional solidification under a low axial magnetic field[J]. Acta Mater., 2009, 57: 2180
[15] Li X, Fautrelle Y, Ren Z M.Morphological instability of cell and dendrite during directional solidification under a high magnetic field[J]. Acta Mater., 2008, 56: 3146
[16] Li X, Fautrelle Y, Ren Z M.Influence of a high magnetic field on columnar dendrite growth during directional solidification[J]. Acta Mater., 2007, 55: 5333
[17] Zhong H, Li C J, Ren Z M, et al.Effect of interdendritic thermoelectric magnetic convection on the evolution of tertiary dendrite during directional solidification[J]. J. Cryst. Growth, 2016, 439: 66
[18] Sato J, Omori T, Oikawa K, et al.Cobalt-base high-temperature alloys[J]. Science, 2006, 312: 90
[19] Omori T, Oikawa K, Sato J, et al.Partition behavior of alloying elements and phase transformation temperatures in Co-Al-W-base quaternary systems[J]. Intermetallics, 2013, 32: 274
[20] Pollock T M, Dibbern J, Tsunekane M, et al.New Co-based γ-γ′ high-temperature alloys[J]. JOM, 2010, 62(1): 58
[21] Xue F, Li Z Q, Feng Q. Mo effect on the microstructure in Co-Al-W-based superalloys [J]. Mater. Sci. Forum, 2010, 654-656: 420
[22] Shi L, Yu J J, Cui C Y, et al.Effect of Ta additions on microstructure and mechanical properties of a single-crystal Co-Al-W-base alloy[J]. Mater. Lett., 2015, 149: 58
[23] Pyczak F, Bauer A, G?ken M, et al.The effect of tungsten content on the properties of L12-hardened Co-Al-W alloys[J]. J. Alloys Compd., 2015, 632: 110
[24] Yan Y H, Coakley J, Vorontsov V A, et al.Alloying and the micromechanics of Co-Al-W-X quaternary alloys[J]. Mater. Sci. Eng., 2014, A613: 201
[25] Wang J, Ren Z M, Fautrelle Y, et al.Modification of liquid/solid interface shape in directionally solidifying Al-Cu alloys by a transverse magnetic field[J]. J. Mater. Sci., 2013, 48: 213
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[7] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[8] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[9] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[10] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[11] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[12] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[13] 帅三三, 林鑫, 肖武泉, 余建波, 王江, 任忠鸣. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 918-926.
[14] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.
[15] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.