Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 575-582    DOI: 10.11900/0412.1961.2015.00520
  论文 本期目录 | 过刊浏览 |
强磁场对定向凝固Al-4.5Cu合金微观偏析的影响*
钟华,李传军,王江,任忠鸣(),钟云波,玄伟东
上海大学省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072
EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY
Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN(),Yunbo ZHONG,Weidong XUAN
State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072, China
引用本文:

钟华,李传军,王江,任忠鸣,钟云波,玄伟东. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响*[J]. 金属学报, 2016, 52(5): 575-582.
Hua ZHONG, Chuanjun LI, Jiang WANG, Zhongming REN, Yunbo ZHONG, Weidong XUAN. EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY[J]. Acta Metall Sin, 2016, 52(5): 575-582.

全文: PDF(1561 KB)   HTML
摘要: 

研究了强静磁场对定向凝固Al-4.5Cu (质量分数, %)合金微观偏析的影响. 结果表明, 强磁场显著影响了凝固组织中非平衡第二相的形态和数量. 无磁场时, 粗大的第二相为网络状, 连续分布于晶界上; 施加磁场后, 晶界上连续分布的第二相被打断, 其面积分数随磁场强度的增加而减小. 在磁场作用下, 溶质原子的再分配行为发生改变, Cu溶质成分曲线降低, 有效分配系数ke减小. 上述现象主要是由于磁场在熔体中引发热电磁对流以及由热电磁对流驱动的二次流, 在糊状区内产生搅拌, 改变溶质传输行为.

关键词 Al-4.5Cu合金强磁场定向凝固微观偏析有效分配系数热电磁对流    
Abstract

Microsegregation is the unbalanced distribution of alloying element between solid and liquid phases in dendritic scale during solidification. The solute redistribution usually leads to the formation of brittle secondary phase, which is harmful to the workability and final mechanical properties of casting component. It has been accepted that fluid flow plays a critical role in mass transfer during solidification and thus altering the microsegregation pattern. High static magnetic field has been considered as an effective way to control the convection in solidification. In this work, the impact of the high static magnetic field on the microsegregation was investigated. Al-4.5Cu (mass fraction, %) alloy was directionally solidified from <001> seed crystal under various magnetic fields with a constant pulling rate of 50 μm/s and temperature gradient of 101 K/cm. OM and BSE were applied to characterize the microstructure of the solidified samples. The fraction of Al2Cu second phase was obtained by software analysis from the transverse and longitudinal sections. The results show that the Al-4.5Cu alloy solidifies in dendritic morphology. The formation of second phase is significantly affected by the magnetic field. Without magnetic field, the continuous network of second phase is observed at grain boundaries. In the presence of the magnetic field, the second phase is disconnected in the grain boundaries and dispersed in grains. The fraction of the second phase is reduced with the increase of the magnetic field. EDS area scan was carried out to measure the concentration of Cu solute in dendritic scale. Isoconcentration contour maps of Cu in the plane perpendicular to the primary dendrite trunk were drawn. The concentration profiles of Cu were plotted from the measured data and the effective partition coefficient ke was calculated. It is found that the redistribution of Cu solute in interdendritic region is greatly altered by the magnetic field. When the intensity of the magnetic field increases, the concentration profile and the ke decrease. The disturbance of the Cu solute in the plane perpendicular to the primary trunk suggests the existence of fluid flow in the interdendritic region. The above phenomena could be attributed to the dendritic scale thermoelectric magnetic convection (TEMC) as well as the second flow driven by the TEMC. The azimuthal TEMC and meridional second flow will bring about stirring in mushy zone and lead to the modification of solute transport during solidification process.

Key wordsAl-4.5Cu alloy    high magnetic field    directional solidification    microsegregation    effective partition coefficient    thermoelectric magnetic convection
收稿日期: 2015-10-08     
基金资助:*国家重点基础研究发展计划项目 2011CB010404, 国家自然科学基金项目51404148和51401116, 以及上海市科学技术委员会项目13DZ1108200, 13521101102和14521102900资助
图1  强磁场下Bridgman定向凝固装置示意图
图2  不同磁场强度下定向凝固Al-4.5Cu合金固/液界面附近横纵截面组织
图3  不同磁场强度下定向凝固Al-4.5Cu合金横截面的BSE像
图4  不同磁场强度下定向凝固Al-4.5Cu合金纵截面的BSE像
图5  不同磁场强度下定向凝固Al-4.5Cu合金横纵截面Al2Cu的面积分数
图6  不同磁场强度下定向凝固Al-4.5Cu合金横截面内Cu元素分布的等高线图
图7  不同磁场强度下定向凝固Al-4.5Cu合金固相中Cu元素的成分曲线
图8  不同磁场强度下Cu的有效分配系数ke随固相体积分数的变化
图9  枝晶尺度热电磁对流的产生以及枝晶周围流体流动的示意图
[1] Chalmers B.Principles of Solidification. New York: John Wiley & Sons, 1964: 15
[2] Kurz W, Fisher D J.Fundamentals of Solidification. Aedermannsdorf: Trans Tech Publications, 1986: 13
[3] Fu H Z, Guo J J, Liu L, Li J S.Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 79
[3] (傅恒志, 郭景杰, 刘林, 李金山, 先进材料定向凝固. 北京: 科学出版社, 2008: 79)
[4] Rudolph P, Kakimoto K.MRS Bull, 2009; 34: 251
[5] Davidson P A.Annu Rev Fluid Mech, 1999; 31: 273
[6] Noeppel A, Ciobanas A, Wang X D, Zaidat K, Mangelinck N, Budenkova O, Weiss A, Zimmermann G, Fautrelle Y.Metall Mater Trans, 2010; 41B: 193
[7] Umeda T, Thirathipviwat P, Supradist M, Nagaumi H.Int J Cast Met Res, 2011; 24: 184
[8] Eckert S, Nikrityuk P, Willers B, R?biger D, Shevchenko N, Neumann-Heyme H, Travnikov V, Odenbach S, Voigt A, Eckert K.Euro Phys J Spec Topics, 2013; 220: 123
[9] Flemings M.Metall Trans, 1991; 22A: 957
[10] Xuan W D, Ren Z M, Li C J, Ren W L, Cheng C, Yu Z.Acta Metall Sin, 2012; 48: 629
[10] (玄伟东, 任忠鸣, 李传军, 任维丽, 陈超, 于湛. 金属学报, 2012; 48: 629)
[11] Kaldre I, Fautrelle Y, Etay J, Bojarevics A, Buligins L.J Alloys Compd, 2013; 571: 50
[12] Li X, Du D F, Gagnoud A, Ren Z M, Fautrelle Y, Moreau R.Metall Mater Trans, 2014; 45A: 5584
[13] Guan G, Du D, Fautrelle Y, Moreau R, Ren Z M, Li X.Europhys Lett, 2015; 111: 28004
[14] Shercliff J A. J Fluid Mech, 1979; 91: 231
[15] Jaworski M A, Gray T K, Antonelli M, Kim J J, Lau C Y, Lee M B, Neumann M J, Xu W, Ruzic D N.Phys Rev Lett, 2010; 104: 094503
[16] Lehmann P, Moreau R, Camel D, Bolcato R.Acta Mater, 1998; 46: 4067
[17] Kao A, Pericleous K.In: Ludwig A ed., 13th International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Schladming: IOP Conference Series, 2012; 33: 012045
[18] Yasuda H, Minami Y, Nagira T, Yoshiya M, Uesugi K, Umetani K.J Iron Steel Res Int, 2012; 19: 34
[19] Wang J, Fautrelle Y, Ren Z M, Nguyen-Thi H, Salloum Abou Jaoude G, Reinhart G, Mangelinck-No?l N, Li X, Kaldre I.Appl Phys Lett, 2014; 104: 121916
[20] Tewari S N, Shah R, Song H.Metall Mater Trans, 1994; 25A: 1535
[21] Dold P, Szofran F R, Benz K W.J Cryst Growth, 2006; 291: 1
[22] Ren W L, Lu L, Yuan G, Xuan W, Zhong Y, Yu J, Ren Z M.Mater Lett, 2013; 100: 223
[23] Li X, Gagnoud A, Ren Z M, Fautrelle Y, Debray F.J Mater Res, 2013; 28: 2810
[24] Yang C B, Liu L, Zhao X B, Liu G, Zhang J, Fu H Z.Acta Metall Sin, 2011; 10: 1246
[24] (杨初斌, 刘林, 赵新宝, 刘刚, 张军, 傅恒志. 金属学报, 2011; 10: 1246)
[25] Henry S, Minghetti T, Rappaz M.Acta Mater, 1998; 46: 6431
[26] Ganesan M, Thuinet L, Dye D, Lee P D.Metall Mater Trans, 2007; 38B: 557
[27] Sheil E.Z Metallkd, 1941; 34: 70
[28] Youdelis W V, Colton D R, Cahoon J.Can J Phys, 1964; 42: 2217
[29] Martin J W, Doherty R D, Cantor B.Stability of Microstructure in Metallic Systems. 2nd Ed., Cambridge: Cambridge University Press, 1997: 391
[30] Wang J, Fautrelle Y, Nguyen-Thi H, Reinhart G, Liao H, Zhong Y B, Ren Z M.Metall Mater Trans, 2016; 47A: 1169
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[7] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[8] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[10] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[11] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[12] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[13] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[14] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[15] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.