Please wait a minute...
金属学报  2012, Vol. 48 Issue (11): 1381-1386    DOI: 10.3724/SP.J.1037.2012.00422
  论文 本期目录 | 过刊浏览 |
Ni-Ag偏晶合金凝固过程研究
赵雷, 赵九洲
中国科学院金属研究所, 沈阳 110016
STUDY OF THE SOLIDIFICATION OF Ni-Ag MONOTECTIC ALLOY
ZHAO Lei, ZHAO Jiuzhou
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

赵雷 赵九洲. Ni-Ag偏晶合金凝固过程研究[J]. 金属学报, 2012, 48(11): 1381-1386.
ZHAO Lei Jiuzhou. STUDY OF THE SOLIDIFICATION OF Ni-Ag MONOTECTIC ALLOY[J]. Acta Metall Sin, 2012, 48(11): 1381-1386.

全文: PDF(716 KB)  
摘要: 

对Ni-Ag偏晶合金开展了喷铸快速凝固实验, 获得了富Ag相粒子弥散分布于Ni基体相的复合凝固组织. 建立了Ni-Ag偏晶合金喷铸快速凝固过程中组织演变的动力学模型, 模拟分析了喷铸Ni-Ag合金凝固组织形成过程. 结果表明: 在喷铸快速凝固条件下, Ni-Ag合金液-液相变过程中富Ag相液滴的Ostwald粗化作用很弱, 初生富Ag相粒子的弥散度主要由液-液相变过程中富Ag相液滴形核率决定, 初生富Ag相粒子的数量密度和平均半径与液-液相变过程中富Ag相液滴形核阶段熔体冷却速率间满足 N\propto\dot{T}Nuc1.8和<R>\propto\dot{T}Nuc-0.6的指数关系.

关键词 Ni-Ag偏晶合金液-液相变快速凝固喷铸模拟    
Abstract

The Ni-Ag alloy has good mechanical properties, high corrosion resistance and electrical conductivity. It is an excellent candidate to be used in many high-tech fields of aerospace, energy resource and chemical engineering etc. This alloy, however, is a typical monotectic system. Generally, the liquid--liquid phase transformation leads to the formation of a solidification microstructure with serious phase segregation. The manufacturing of this alloy is thus extremely difficult. Injection casting has already been carried out with the Ni-Ag monotectic alloy. The sample with composite microstructure, in which Ag-rich particles dispersed homogeneously in Ni matrix has been obtained. A model describing the microstructure evolution during injection casting of the Ni-Ag monotectic alloy has been proposed. The process of microstructure formation has been simulated and discussed in details. The results indicate that the Ostwald coarsening of Ag-rich droplets is very weak during cooling in miscibility gap under injection casting cooling conditions. The dispersivity of the primary Ag--rich phase is controlled by the nucleation of Ag-rich droplets during the liquid-liquid transformation. The number density ($N$) and average radius (<R>) of primary Ag--rich particles depend exponentially on the cooling rate of the alloy during the nucleation of Ag-rich droplets ($\dot{T}_{\rm Nuc}$) according to $N\propto\dot{T}_{\rm Nuc}^{1.8}$ and $\langle R\rangle\propto\dot{T}_{\rm Nuc}^{-0.6}$.

Key wordsNi-Ag monotectic alloy    liquid-liquid transformation    rapid solidification    injection casting    simulation
收稿日期: 2012-07-12     
ZTFLH:  TG111.4  
基金资助:

国家自然科学基金项目u0837601, 51071159和51031003资助

作者简介: 赵雷, 男, 1981年生, 博士生

[1] Tsuji K, Inada H, Kojima K, Satoh M, Higashi K, Miyanami K, Tanimura S. J Mater Sci, 1992; 27: 1179

[2] Michal R, Saeger K E. IEEE Trans Comp Hybrids Manuf Technol, 1989; 12: 1

[3] Zhang Z Y, Nenoff T M, Huang J Y, Berry D T, Provencio P P. J Phys Chem, 2009; 113C: 1155

[4] Xie M, Zheng F Q,Wei J, Liu J L, Hu J S, Gu J Z, Li X. Precious Met, 1997; 18: 1

(谢 明, 郑福前, 魏 军, 刘建良, 胡建松, 顾江镇, 李 雄. 贵金属, 1997; 18: 1)

[5] Liu Z J, Cao J, Qu X H, Huang B Y, Li Z Y, Chen S Q, Lei C M. Chin Pat, 00103911.3, 2000

(刘志坚, 曹健, 曲选辉, 黄伯云, 李志友, 陈仕奇, 雷长明. 中国专利, 00103911.3, 2000)

[6] Dawson A W, Malik K L. US Pat, 5497133, 1996

[7] Cui H B, Guo J J, Su Y Q, Wu S P, Li X Z, Fu H Z. Acta Metall Sin, 2007; 43: 907

(崔红保, 郭景杰, 苏彦庆, 吴士平, 李新中, 傅恒志. 金属学报, 2007; 43: 907)

[8] Shi R P, Wang Y, Wang C P, Liu X J. Appl Phys Lett, 2011; 98: 204106

[9] Wang W L, Li Z Q, Wei B. Acta Mater, 2011; 59: 5482

[10] Zhou F M, Sun D K, Zhu M F. Acta Phys Sin, 2010; 59: 3394

(周丰茂, 孙东科, 朱鸣芳. 物理学报, 2010; 59: 3394)

[11] Zuo X W, Wang E G, Han H, Zhang L, He J C. Acta Metall Sin, 2008; 44: 1219

(左小伟, 王恩刚, 韩 欢, 张 林, 赫冀成. 金属学报, 2008; 44: 1219)

[12] Zhao J Z, Gao L L, He J, Wang J T, Chen G Y. Acta Metall Sin, 2006; 42: 113

(赵九洲, 高玲玲, 何 杰, 王江涛, 陈桂云. 金属学报, 2006; 42: 113)

[13] Qin G Y, Wang J H, Zhao H Z, Ning Y T, Xu S Y, Guo J X. Chin J Nonferrous Met, 2009; 19: 286

(秦国义, 王剑华, 赵怀志, 宁远涛, 许思勇, 郭锦新. 中国有色金属学报, 2009; 19: 286)

[14] Kuntyi O I, Olenych R R. Russ J Appl Chem, 2005; 78: 556

[15] Zhao J Z, Li H L, Xing C Y, Zhang X F, Wang Q L, He J. Comput Mater Sci, 2010; 49: 121

[16] He J, Zhao J Z, Ratke L. Acta Mater, 2006; 54: 1749

[17] Hu Z Q, Zhang H F. Acta Metall Sin, 2010; 46: 1391

(胡壮麒, 张海峰. 金属学报, 2010; 46: 1391)

[18] Zhao J Z, Guo J J, Jia J, Li Q C. Trans Nonferrous Met Soc China, 1995; 5: 85

[19] Zhao J Z, Gao L L, He J. Appl Phys Lett, 2005; 87: 131905

[20] Zhao J Z, Ratke L, Feuerbacher B. Modell Simul Mater Sci Eng, 1998; 6: 23

[21] Granasy L, Ratke L. Scr Metall Mater, 1993; 28: 1329

[22] Liu X J, Gao F, Wang C P, Ishida K. J Electron Mater, 2008; 37: 210

[23] Dinsdale A T. Calphad, 1991; 15: 317

[24] Kaptay G. Mater Sci Forum, 2006; 508: 269

[25] Kaban I G, Hoyer W. Phys Rev, 2008; 77B: 125426

[26] Brandes E A, Brook G B. Smithells Metals Reference Book. 7th Ed, Oxford: Butterworth–Heinemann Ltd., 1992: 14–7

[27] Pommrich A I, Meyer A, Holland–Moritz D, Unruh T. Appl Phys Lett, 2008; 92: 241922

[28] Roy A K, Chhabra R P. Metall Mater Trans, 1988; 19A: 273

[29] Su X P, Yang S, Wang J H, Tang N–Y, Yin F C, Li Z, Zhao M X. J Phase Equilib Diffus, 2010; 31: 333

[30] Louzguine–Luzgin D V, Setyawan A D, Kato H, Inoue A. Appl Phys Lett, 2006; 88: 251902

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[7] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[9] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[10] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[11] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[12] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[13] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[14] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[15] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.