Please wait a minute...
金属学报  2004, Vol. 40 Issue (12): 1238-1242     
  论文 本期目录 | 过刊浏览 |
纳米压痕形变过程的分子动力学模拟
李启楷; 张 跃; 褚武扬
北京科技大学材料物理系;北京 100083
MOLECULAR DYNAMICS SIMULATION OF PLASTIC DEFORMATION DURING NANOINDENTATION
LI Qikai; ZHANG Yue; CHU Wuyang
Department of Materials Physics; University of Science and Technology Beijing; Beijing 100083
引用本文:

李启楷; 张跃; 褚武扬 . 纳米压痕形变过程的分子动力学模拟[J]. 金属学报, 2004, 40(12): 1238-1242 .
, , . MOLECULAR DYNAMICS SIMULATION OF PLASTIC DEFORMATION DURING NANOINDENTATION[J]. Acta Metall Sin, 2004, 40(12): 1238-1242 .

全文: PDF(388 KB)  
摘要: 根据EAM多体势, 利用分子动力学方法模拟了Ni压头压入Al基体的纳米压痕全过程. 包括压头接近和离开基体时的原子组态; 压入和上升时的载荷-位移曲线以及位错 的发射和形变带的产生和变化; 同时模拟了纳米尺度的应力弛豫行为. 结果表明, 当压头尚未接触基体时就能吸引基体原子,通过缩颈而互相连接. 当压入应力 τs为1.9 MPa时,基体Al开始发射位错; 当分切应力 τd=6.4 MPa时,出现形变带. 压头上升过程出现反向的拉应力,使 基体反向屈服,在卸载过程中基体残留位错的组态不断改变. 当压头上升离开基 体后能拉着基体通过缩颈而相连,当压头和基体分离后仍粘有基体原子. 在纳米 尺度也存在应力弛豫现象,其原因是热激活引起的位错发射和运动.
关键词 纳米压痕分子动力学模拟位错发射     
Abstract:The plastic deformation process during nanoindentation of Ni tip into Al substrate, including loading, unloading and stress relaxation has been studied by using molecular dynamics simulation with EAM potential. Results showed that a connective neck between the indenter and the substrate will be formed when the indenter approaches and leaves the substrate surface. During nanoindentation, the first dislocation is emitted at a critical shear stress τs=1.9 MPa, and shear bands appear at partial shear stress τd=6.4 MPa. When the indenter moves upwards, a reverse tensile stress appears and results in reverse yield of the substrate and continuous change in dislocation configuration. When the indentation tip is retracted and passed through its initial indentation position, it connects to the substrate by necking, and when the tip broke away from the substrate finally, there still exist some substrate atoms on the tip. Stress relaxation has been observed on the nanoscale, which attributes to heat activated dislocation emission and motion.
Key wordsnanoindentation    molecular dynamics simulation    dislocation emission
收稿日期: 2003-12-28     
ZTFLH:  TG146.11  
[1] Field J S, Swain M V. J Mater Res, 1993; 8: 297
[2] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 1564
[3] Bahr D F, Kramer D E, Gerberich W W. Ada Mater,1998; 46: 3605
[4] Pang M, Eakins D E, Norton M G, Bahr D F. Corrosion,2001; 57: 523
[5] Doerner M F, Gardner D S, Nix W D. J Mater Res, 1986;1: 845
[6] Bahr D F, Nelson J C, Tymiak N, Gerberich W W.JMater Res, 1997; 12: 3345
[7] Yao Y, Qiao L J, Sun D B, Chu W Y. Acta Metall Sin, 2003; 39: 855 (姚远,乔利杰,孙冬柏,褚武扬.金属学报,2003;39:855)
[8] Hoagland R G, Daw M D, Hirth J P. J Mater Res, 1991;6: 2565
[9] Li Q K, Zhang Y, Shi S Q, Chu W Y. Mater Lett, 2002; 56: 927
[10] Landman U, Luedtke W D, Burnham N A, Colton R J. Science, 1990; 248: 454
[11] Rafii-Tabar H. Phys Rep, 2000; 325: 240
[12] Yu H L, Adams J B, Hector L G. Modell Simul Mater Sci Eng, 2002; 10: 239
[13] Christopher D, Smith R, Richter A. Nucl lnstrum Methods Phys Res, 2001;180:117
[14] Chen S P, Voter A F, Albers R C. J Mater Res, 1990; 5: 955
[15] Toxvaerd S. J Comput Phys, 1982; 47:444
[16] Calm R W, Haasen P. Physical Metallurgy. 3rd ed., Amsterdam: North-Holland, 1983: 1301
[17] Ma Q, Clarke D R. J Mater Res, 1995; 10: 853
[18] McElhaney K W, Vlassak J J, Nix W D. J Mater Res, 1998;13:1300
[19] Fleck N A, Hutchinson J W. J Mech Phys Solids, 1993; 41: 1825
[20] Wang W, Jiang C B, Lu K. Acta Mater, 2003; 51: 6169L
[1] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[2] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[3] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[4] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[5] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[6] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[7] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[8] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[9] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
[10] 徐宏扬,柯海波,黄火根,张培,张鹏国,刘天伟. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究[J]. 金属学报, 2017, 53(7): 817-823.
[11] 刘积厚,赵洪运,李卓霖,宋晓国,董红杰,赵一璇,冯吉才. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能[J]. 金属学报, 2017, 53(2): 227-232.
[12] 杨彪,郑百林,胡兴健,贺鹏飞,岳珠峰. 空洞对镍基单晶合金纳米压痕过程的影响*[J]. 金属学报, 2016, 52(2): 129-134.
[13] 徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.
[14] 梁力, 马明旺, 谈效华, 向伟, 王远, 程焰林. 含缺陷金属Ti力学性能的模拟研究[J]. 金属学报, 2015, 51(1): 107-113.
[15] 秦飞, 项敏, 武伟. 纳米压痕法确定TSV-Cu的应力-应变关系*[J]. 金属学报, 2014, 50(6): 722-726.