|
|
基于微观结构的多晶Cu纳米压痕表面缺陷研究 |
赵鹏越1,2, 郭永博1( ), 白清顺1, 张飞虎1 |
1 哈尔滨工业大学精密工程研究所 哈尔滨 150001 2 哈尔滨工业大学机器人技术与系统国家重点实验室 哈尔滨 150001 |
|
Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures |
Pengyue ZHAO1,2, Yongbo GUO1( ), Qingshun BAI1, Feihu ZHANG1 |
1 Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China 2 State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
Pengyue ZHAO,
Yongbo GUO,
Qingshun BAI,
Feihu ZHANG.
Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. Acta Metall Sin, 2018, 54(7): 1051-1058.
[1] | Zhang J J, Sun T, Yan Y D, et al.Molecular dynamics modeling of probe-based nanoscratching on crystalline copper[J]. Chin. Mech. Eng., 2012, 23: 967(张俊杰, 孙涛, 闫永达等. 晶体铜微探针纳米刻划的分子动力学建模[J]. 中国机械工程, 2012, 23: 967) | [2] | Jang H, Farkas D.Interaction of lattice dislocations with a grain boundary during nanoindentation simulation[J]. Mater. Lett., 2007, 61: 868 | [3] | Xu T, Sarkar S, Li M, et al.Quantifying microstructures in isotropic grain growth from phase field modeling: Methods[J]. Acta Mater., 2012, 60: 4787 | [4] | Xu T, Sarkar S, Li M, et al.Quantifying microstructures in isotropic grain growth from phase field modeling: Topological properties[J]. Acta Mater., 2013, 61: 2450 | [5] | Yang B, Zheng B L, Hu X J, et al.Effect of void on nanoindentation process of Ni-based single crystal alloy[J]. Acta Metall. Sin., 2016, 52: 129(杨彪, 郑百林, 胡兴健等. 空洞对镍基单晶合金纳米压痕过程的影响[J]. 金属学报, 2016, 52: 129) | [6] | Zhang K, Weertman J R, Eastman J A.The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper[J]. Appl. Phys. Lett., 2004, 85: 5197 | [7] | Saraev D, Miller R E.Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings[J]. Acta Mater., 2006, 54: 33 | [8] | Casals O, O?ená?ek J, Alcalá J.Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals[J]. Acta Mater., 2007, 55: 55 | [9] | Li Q K, Zhang Y, Chu W Y.Molecular dynamics simulation of plastic deformation during nanoindentation[J]. Acta Metall. Sin., 2004, 40: 1238(李启楷, 张跃, 褚武扬. 纳米压痕形变过程的分子动力学模拟[J]. 金属学报, 2004, 40: 1238) | [10] | Wang H L, Wang X X, Wang Y, et al.Atomistic simulation of stress-induced crystallization behavior during the indentation process for amorphous Cu[J]. Acta Metall. Sin., 2007, 43: 259(王海龙, 王秀喜, 王宇等. 压痕过程中非晶Cu形变诱导晶化行为的原子模拟[J]. 金属学报, 2007, 43: 259) | [11] | Leng Y S, Yang G P, Hu Y Z, et al.Computer experiments on nano-indentation: A molecular dynamics approach to the elasto-plastic contact of metal copper[J]. J. Mater. Sci., 2000, 35: 2061 | [12] | Shen B, Sun F H.Molecular dynamics investigation on the atomic-scale indentation and friction behaviors between diamond tips and copper substrate[J]. Diam. Relat. Mater., 2010, 19: 723 | [13] | Lin Y H, Chen T C.A molecular dynamics study of phase transformations in mono-crystalline Si under nanoindentation[J]. Appl. Phys., 2008, 92A: 571 | [14] | Saraev D, Miller R E.Atomistic simulation of nanoindentation into copper multilayers[J]. Modell. Simul. Mater. Sci. Eng., 2005, 13: 1089 | [15] | Szlufarska I.Atomistic simulations of nanoindentation[J]. Mater. Today, 2006, 9(5): 42 | [16] | Yaghoobi M, Voyiadjis G Z.Effect of boundary conditions on the MD simulation of nanoindentation[J]. Comput. Mater. Sci., 2014, 95: 626 | [17] | Christopher D, Smith R, Richter A.Atomistic modelling of nanoindentation in iron and silver[J]. Nanotechnology, 2001, 12: 372 | [18] | Liang H Y, Woo C H, Huang H C, et al.Crystalline plasticity on copper (001), (110), and (111) surfaces during nanoindentation[J]. Comput. Modell. Eng. Sci., 2004, 6: 105 | [19] | Huang C C, Chiang T C, Fang T H.Grain size effect on indentation of nanocrystalline copper[J]. Appl. Surf. Sci., 2015, 353: 494 | [20] | Zhu T, Li J, Van Vliet K J, et al. Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper[J]. J. Mech. Phys. Solids, 2004, 52: 691 | [21] | Ma X L, Yang W.Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation[J]. Nanotechnology, 2003, 14: 1208 | [22] | Carpio P, Rayón E, Paw?owski L, et al.Microstructure and indentation mechanical properties of YSZ nanostructured coatings obtained by suspension plasma spraying[J]. Surf. Coat. Technol., 2013, 220: 237 | [23] | Guo Y B, Xu T, Li M.Generalized type III internal stress from interfaces, triple junctions and other microstructural components in nanocrystalline materials[J]. Acta Mater., 2013, 61: 4974 | [24] | Guo Y B, Xu T, Li M.Hierarchical dislocation nucleation controlled by internal stress in nanocrystalline copper[J]. Appl. Phys. Lett., 2013, 102: 241910 | [25] | Guo Y B, Xu T, Li M.Atomistic calculation of internal stress in nanoscale polycrystalline materials[J]. Philos. Mag., 2012, 92: 3064 | [26] | Liu C L.Energetics of diffusion processes during nucleation and growth for the Cu/Cu(100) system[J]. Surf. Sci., 1994, 316: 294 | [27] | Pei Q X, Lu C, Fang F Z, et al.Nanometric cutting of copper: A molecular dynamics study[J]. Comput. Mater. Sci., 2006, 37: 434 | [28] | Zhang F, Liu Z, Zhou J Q.Molecular dynamics simulation of micro-mechanical deformations in polycrystalline copper with bimodal structures[J]. Mater. Lett., 2016, 183: 261 | [29] | Goel S, Haque Faisal N, Luo X C, et al.Nanoindentation of polysilicon and single crystal silicon: Molecular dynamics simulation and experimental validation[J]. J. Phys., 2014, 47D: 275304 | [30] | Sansoz F, Stevenson K D.Relationship between hardness and dislocation processes in a nanocrystalline metal at the atomic scale[J]. Phys. Rev., 2011, 83B: 224101 | [31] | Tucker G J, Foiles S M.Molecular dynamics simulations of rate-dependent grain growth during the surface indentation of nanocrystalline nickel[J]. Mater. Sci. Eng., 2013, A571: 207 | [32] | Sichani M M, Spearot D E.A molecular dynamics study of the role of grain size and orientation on compression of nanocrystalline Cu during shock[J]. Comput. Mater. Sci., 2015, 108: 226 | [33] | Gao Y, Ruestes C J, Tramontina D R, et al.Comparative simulation study of the structure of the plastic zone produced by nanoindentation[J]. J. Mech. Phys. Solids., 2015, 75: 58 | [34] | Jiao S S, Tu W J, Zhang P G, et al.Atomistic insights into the prismatic dislocation loop on Al (100) during nanoindentation investigated by molecular dynamics[J]. Comput. Mater. Sci., 2018, 143: 384 | [35] | Li J, Guo J W, Luo H, et al.Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations[J]. Appl. Surf. Sci., 2016, 364: 190 | [36] | Yaghoobi M, Voyiadjis G Z.Atomistic simulation of size effects in single-crystalline metals of confined volumes during nanoindentation[J]. Comput. Mater. Sci., 2016, 111: 64 | [37] | Tschopp M A, McDowell D L. Grain boundary dislocation sources in nanocrystalline copper[J]. Scr. Mater., 2008, 58: 299 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|