Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 817-823    DOI: 10.11900/0412.1961.2016.00322
  本期目录 | 过刊浏览 |
U65Fe30Al5非晶合金的纳米压痕蠕变行为研究
徐宏扬,柯海波,黄火根,张培,张鹏国,刘天伟()
中国工程物理研究院材料研究所 江油 621907
Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy
Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU()
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
引用本文:

徐宏扬,柯海波,黄火根,张培,张鹏国,刘天伟. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究[J]. 金属学报, 2017, 53(7): 817-823.
Hongyang XU, Haibo KE, Huogen HUANG, Pei ZHANG, Pengguo ZHANG, Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy[J]. Acta Metall Sin, 2017, 53(7): 817-823.

全文: PDF(2482 KB)   HTML
摘要: 

在室温下利用纳米压痕测试技术研究了峰值载荷和加载速率对U65Fe30Al5新型非晶合金蠕变行为的影响规律。结果表明,随着峰值载荷和加载速率的增加,在相同蠕变时间内,蠕变位移呈增大趋势,但当加载速率高于特定阈值时,蠕变位移不再增大。通过蠕变经验公式拟合发现,蠕变过程的应力指数随峰值载荷的增加不断变大,但随加载速率的增加先减小后基本恒定。与常规晶态合金相比,U65Fe30Al5非晶合金具有更大的应力指数,这反映出后者内部结构中富含自由体积。

关键词 非晶合金铀合金纳米压痕蠕变行为应力指数    
Abstract

Uranium is a valuable nuclear fuel material, but this application is unavoidably handicapped by the easy creep behavior of the metal caused by the combination of stress and irradiation in nuclear reactor. Uranium-based amorphous alloys, as a kind of potential new materials in the nuclear industry, would be challenged by this issue when used in such situation. However, creep properties of these materials have not been reported in the previous studies. In order to preliminarily investigate the creep phenomenon derived from stress function, this work is performed to study the ambient creep behavior of a new amorphous alloy U65Fe30Al5. This alloy was tested by using a nanoindentation technique under different peak loads and loading rates. The results indicate that the creep displacement gradually increases with either the peak load or the loading rate in equal creeping time, but this tendency vanishes when exceeding a critical loading rate. The fitting based on an empirical creep equation reveals that the stress exponent of the alloy ascends when raising the peak load, and firstly declines with the loading rate and then keeps constant above the critical rate. Compared with conventional crystalline alloys, the U-Co-Al alloy shows a larger stress exponent, reflecting the possible existence of rich free volume in the amorphous alloy.

Key wordsamorphous alloy    uranium alloy    nanoindentation    creep    stress exponent
收稿日期: 2016-07-21     
基金资助:国家自然科学基金项目No.51501169,国防基础科研计划项目No.B1520133007,中国工程物理研究院科技发展基金项目Nos.2013A0301015和2014B0302047
图1  纳米压痕测试过程的加载函数与理想特征曲线
图2  U65Fe30Al5非晶合金的XRD谱
图3  U65Fe30Al5非晶合金在不同载荷条件下蠕变30 s的载荷-深度曲线和蠕变位移-时间曲线(起始蠕变位移和时间进行归零化处理)
图4  U65Fe30Al5非晶合金在不同加载速率下蠕变30 s的载荷-深度曲线(平移处理后)和蠕变位移-时间曲线
图5  U65Fe30Al5非晶合金的蠕变位移随载荷与加载速率的变化趋势
图6  U65Fe30Al5非晶合金蠕变过程中的实验与拟合曲线(式(3))和应力指数变化图
图7  U65Fe30Al5非晶合金稳态蠕变过程中的应力指数-载荷曲线与应力指数-加载速率曲线
Composition Material type Peak load mN Creep time / s Loading rate mNs-1 Stress exponent
U65Fe30Al5 Amorphous 100 30 20 89
Ti40Zr25Ni3Cu12Be20[18] Amorphous 100 2000 0.1 5
Ta film[24] Amorphous 8 40 5 78.7
Fused quartz[20] Glass 69.4 95 - 85
B6O[26] Polycrystalline 100 15 200 0.14
表1  不同材料纳米压痕蠕变得到的应力指数
[1] Mu X Y.Creep Mechanics [M]. Xi'an: Xi'an Jiaotong University Press, 1990: 67
[1] (穆霞英. 蠕变力学[M]. 西安: 西安交通大学出版社, 1990: 67)
[2] ?adek J.Creep in Metallic Materials[M]. Amsterdam: Elsevier Science Ltd., 1988: 85
[3] Nabarro F R N, de Villiers H L. The Physics of Creep[M]. London: Taylor and Francis, 1995: 113
[4] Li W B, Henshall J L, Hooper R M, et al.The mechanisms of indentation creep[J]. Acta Metall. Mater., 1991, 39: 3099
[5] Ranaivomanana N, Multon S, Turatsinze A.Basic creep of concrete under compression, tension and bending[J]. Constr. Build. Mater., 2013, 38: 173
[6] Mahmudi R, Roumina R, Raeisinia B.Nvestigation of stress exponent in the power-law creep of Pb-Sb alloys[J]. Mater. Sci. Eng., 2004, A382: 15
[7] Gao Y, Wen S P, Wang X H, et al.Investigation on indentation creep by depth sensing indentation[J]. J. Aeronaut. Mater., 2006, 26(3): 148
[7] (高阳, 文胜平, 王晓慧等. 纳米压痕法测试压痕蠕变的应用研究[J]. 航空材料学报, 2006, 26(3): 148)
[8] Elmustafa A A, Stone D S.Strain rate sensitivity in nanoindentation creep of hard materials[J]. J. Mater. Res., 2007, 22: 2912
[9] Lucas B N, Oliver W C.Indentation power-law creep of high-purity indium[J]. Metall. Mater. Trans., 1999, 30A: 601
[10] Wang W H.The nature and properties of amorphous matter[J]. Prog. Phys., 2013, 33: 177
[10] (汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33: 177)
[11] Huang H G, Wang Y M, Chen L, et al.Study on formation and corrosion resistance of amorphous alloy in U-Co system[J]. Acta Metall. Sin., 2015, 51: 623
[11] (黄火根, 王英敏, 陈亮等. U-Co系非晶合金的形成与耐蚀性研究[J]. 金属学报, 2015, 51: 623)
[12] Huang H G, Ke H B, Wang Y M, et al.Stable U-based metallic glasses[J]. J. Alloys Compd., 2016, 684: 75
[13] Bleiberg M L, Jones L J, Lustman B.Phase changes in pile-irradiated uranium-base alloys[J]. J. Appl. Phys., 1956, 27: 1270
[14] Elliott R O, Giessen B C.On the formation of metallic glasses based on U, Np or Pu[J]. Acta Metall., 1982, 30: 785
[15] Huang H G, Ke H B, Zhang P, et al.Effect of minor alloying on the glass formation of U-based alloys[J]. J. Alloys Compd., 2016, 688: 599
[16] Yang Y, Zeng J F, Ye J C, et al.Structural inhomogeneity and anelastic deformation in metallic glasses revealed by spherical nanoindentation[J]. Appl. Phys. Lett., 2010, 97: 261905
[17] Ma Y, Peng G J, Feng Y H, et al.Nanoindentation investigation on the creep mechanism in metallic glassy films[J]. Mater. Sci. Eng., 2016, A651: 548
[18] Huang Y J, Chiu Y L, Shen J, et al.Indentation creep of a Ti-based metallic glass[J]. J. Mater. Res., 2009, 24: 993
[19] Pang J J, Tan M J, Liew K M, et al.Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu49.3Zr50.7 [J]. Physics, 2012, 407B: 340
[20] Li H, Ngan A H W. Size effects of nanoindentation creep[J]. J. Mater. Res., 2004, 19: 513
[21] Schuh C A, Lund A C, Nieh T G.New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling[J]. Acta Mater., 2004, 52: 5879
[22] Spaepen F.A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Metall., 1977, 25: 407
[23] Argon A S.Plastic deformation in metallic glasses[J]. Acta Metall., 1979, 27: 47
[24] Cao Z H, Li P Y, Meng X K.Nanoindentation creep behaviors of amorphous, tetragonal, and bcc Ta films[J]. Mater. Sci. Eng., 2009, A516: 253
[25] Zhang H W, Jing X N, Subhash G, et al.Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation[J]. Acta Mater., 2005, 53: 3849
[26] Machaka R, Derry T E, Sigalas L.Room temperature nanoindentation creep of hot-pressed B6O[J]. Mater. Sci. Eng., 2014, A607: 521
[1] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[2] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[3] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[4] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[5] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[6] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[7] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[8] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[9] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[10] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[11] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[12] 胡祥, 葛嘉城, 刘思楠, 伏澍, 吴桢舵, 冯涛, 刘冬, 王循理, 兰司. 具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理[J]. 金属学报, 2021, 57(4): 542-552.
[13] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[14] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[15] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.