Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 129-134    DOI: 10.11900/0412.1961.2015.00193
  论文 本期目录 | 过刊浏览 |
空洞对镍基单晶合金纳米压痕过程的影响*
杨彪1,郑百林1(),胡兴健1,贺鹏飞1,岳珠峰2
1 同济大学航空航天与力学学院应用力学研究所, 上海 200092
2 西北工业大学力学与土木建筑学院, 西安 710072
EFFECT OF VOID ON NANOINDENTATION PROCESS OF Ni-BASED SINGLE CRYSTAL ALLOY
Biao YANG1,Bailin ZHENG1(),Xingjian HU1,Pengfei HE1,Zhufeng YUE2
1 Institute of Applied Mechanics, School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
2 School of Mechanics and Civil&Architecture, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

杨彪,郑百林,胡兴健,贺鹏飞,岳珠峰. 空洞对镍基单晶合金纳米压痕过程的影响*[J]. 金属学报, 2016, 52(2): 129-134.
Biao YANG, Bailin ZHENG, Xingjian HU, Pengfei HE, Zhufeng YUE. EFFECT OF VOID ON NANOINDENTATION PROCESS OF Ni-BASED SINGLE CRYSTAL ALLOY[J]. Acta Metall Sin, 2016, 52(2): 129-134.

全文: PDF(5760 KB)   HTML
摘要: 

通过分子动力学方法, 研究了3种含相同半径、不同深度空洞的镍基单晶合金模型与理想模型纳米压痕过程的区别. 采用中心对称参数分析4种模型在不同压入深度时基体内部位错形核、长大的过程以及空洞和错配位错对纳米压痕过程的影响. 材料的压入荷载-压入深度曲线显示, 空洞最浅的模型与理想模型相差最大. 空洞对材料纳米压痕过程有2种作用, 当压入深度较浅时(h<0.375 nm), 空洞的存在会弱化材料, 而当压入深度处于0.375~0.567 nm之间时, 空洞表面的原子对位错的长大起到阻碍作用, 使得压入荷载增加; 空洞的坍塌会吸收一部分应变能, 减少γ相中层错的形成; 当空洞完全坍塌后, 位错会在空洞原始位置纠缠, 并产生大量层错, 使得压入荷载减小. γ/γ'相相界面存在空洞时, 当达到最大压入深度, 部分错配位错分解, 且被γ相表面吸收, 形成表面台阶. 处在最深位置的空洞并未对材料纳米压痕过程产生影响.

关键词 纳米压痕分子动力学空洞错配位错    
Abstract

Nanoindentation of Ni-based single crystal alloy which has a void defect is simulated by the molecular dynamics method. Three models with different voids which have a same radius but different depth (H=1.5 nm, 3.0 nm, 4.5 nm) are contrasted to the perfect model respectively. The influence of a void and misfit dislocation on nanoindentation process are analyzed using center symmetry parameter. Nucleation and growth of dislocation on various indentation depth are researched simultaneously. After relaxation, misfit dislocations occur in all models, which indicates that the void does not affect the generation of misfit dislocation in γ/γ' phase. The indentation load-depth curves show the shallow void (H=1.5 nm) has the greatest influence on nanoindentation. The results demonstrate that the void has two different ways to affect the nanoindentation process. Initially, the void softens the materials when the indentation depth is less than 0.375 nm. However, it will hinder the growth of dislocations because of a kind of surface force, which causes the increase of indentation load while the indentation depth is between 0.375 nm and 0.567 nm. The collapse of a void absorbs the strain energy, so the amount of stacking faults nucleation in γ phase in model with the shallow void is less than which in the perfect model. The indentation load-depth curves show that the indentation load in the H=1.5 nm model is larger than load in the perfect model at 1.263 nm indentation depth. But when the void collapses completely, dislocations tangle around the original location of the void and more stacking faults generate comparing to the perfect model at the same indentation depth h=1.743 nm. So the indentation load declines and becomes smaller than load in perfect model. If the void locates at the interface of γ/γ' phase (H=3.0 nm), it influence the nanoindentation process later than H=1.5 nm model. Dissociation of misfit dislocations is observed when the indentation depth arrives the maximum value 1.748 nm in H=3.0 nm model. Stairs form on the surface of γ phase because of the dissociation of misfit dislocations. There is almost no influence on the nanoindentation of Ni-based single crystal alloy when the void locates in the γ' phase (H=4.5 nm).

Key wordsnanoindentation    molecular dynamics    void    misfit dislocation
收稿日期: 2015-04-03     
基金资助:*国家重大国际(地区)合作研究资助项目51210008
图1  计算模型示意图
图2  纳米压痕计算模型示意图
图3  4种模型弛豫后中心对称参数图
图4  4种模型压入荷载-压入深度曲线
图5  理想模型与H=1.5 nm模型在不同压入深度时基体内部中心对称参数图
图6  H=3.0 nm模型不同压入深度时基体内部中心对称参数图
图7  压入深度h=1.748 nm时基体内部中心对称参数图
图8  H=3.0 nm 模型在压入深度h=1.748 nm时基体表面中心对称参数图
[1] Nathal M V, MacKay R A, Garlick R G.Mater Sci Eng, 1985; 75: 195
[2] Probst-Hein M, Dlouhy A, Eggeler G.Acta Mater, 1999; 47: 2497
[3] Kamaraj M.Sadhana, 2003; 28: 115
[4] Zhu T, Wang C.Phys Rev, 2005; 72B: 14111
[5] Pyczak F, Devrient B, Neuner F C, Mughrabi H.Acta Mater, 2005; 53: 3879
[6] Zhu T, Wang C Y.Chin Phys, 2006; 15: 2087
[7] Xie H, Wang C, Yu T.Modelling Simul Mater Sci Eng, 2009; 17: 55007
[8] Wu W P, Guo Y F, Wang Y S, Mueller R, Gross D.Philos Mag, 2011; 91: 357
[9] Heckl A, Neumeier S, Göken M, Singer R F.Mater Sci Eng, 2011; A528: 3435
[10] Schuh C A.Mater Today, 2006; 9(5): 32
[11] Szlufarska I.Mater Today, 2006; 9(5): 42
[12] Landman U, Luedtke W D, Burnham N, Colton R.Science, 1990; 248: 454
[13] Belak J, Boercker D B, Stowers I F.Mrs Bull, 1993; 18: 55
[14] Liang H Y, Woo C H, Huang H, Ngan A, Yu T X.Philos Mag, 2003; 83: 3609
[15] Quan W L, Li H X, Ji L, Zhao F, Du W, Zhou H D, Chen J M.Acta Phys Sin, 2010; 59: 5687
[15] (权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 物理学报, 2010; 59: 5687)
[16] Hu X J, Zheng B L, Hu T Y, Yang B, He P F, Yue Z F.Acta Phys Sin, 2014; 63(17): 218
[16] (胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰. 物理学报, 2014; 63(17): 218)
[17] Yu W, Shen S.Compos Mater Sci, 2009; 46: 425
[18] Yang Q L, Zhang G C, Xu A G, Zhao Y H, Li Y J.Acta Phys Sin, 2008; 57: 940
[18] (杨其利, 张广财, 许爱国, 赵艳红, 李英骏. 物理学报, 2008; 57: 940)
[19] Shan D B, Yuan L, Xu Z H, Guo B.J Nanosci Nanotechnol, 2009; 9: 1234
[20] Tan C M, Jeng Y R.Int J Solids Struct, 2009; 46: 1884
[21] Zhu P Z, Hu Y Z, Wang H.Sci China Phys Mech Astron, 2010; 53: 1716
[22] Njeim E K, Bahr D F.Scr Mater, 2010; 62: 598
[23] Fang T H, Chang W Y, Huang J J.Acta Mater, 2009; 57: 3341
[24] Hoffmann K H, Schreiber M. Computational Physics.Berlin Heidelberg: Springer-Verlag, 1996: 268
[25] Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A.Phys Rev, 1999; 59B: 3393
[1] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[2] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[3] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[4] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[5] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[6] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[7] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[8] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[9] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[10] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[11] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[12] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[13] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[14] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[15] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.