Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 722-726    DOI: 10.3724/SP.J.1037.2013.00782
  本期目录 | 过刊浏览 |
纳米压痕法确定TSV-Cu的应力-应变关系*
秦飞, 项敏, 武伟
北京工业大学机械工程与应用电子技术学院, 北京100124
THE STRESS-STRAIN RELATIONSHIP OF TSV-Cu DETERMINED BY NANOINDENTATION
QIN Fei, XIANG Min, WU Wei
College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124
引用本文:

秦飞, 项敏, 武伟. 纳米压痕法确定TSV-Cu的应力-应变关系*[J]. 金属学报, 2014, 50(6): 722-726.
Fei QIN, Min XIANG, Wei WU. THE STRESS-STRAIN RELATIONSHIP OF TSV-Cu DETERMINED BY NANOINDENTATION[J]. Acta Metall Sin, 2014, 50(6): 722-726.

全文: PDF(1495 KB)   HTML
摘要: 

为得到硅通孔电镀填充铜(TSV-Cu)的力学性能, 对TSV-Cu进行了Berkovich纳米压痕实验. 基于Oliver-Pharr算法和连续刚度法确定TSV-Cu的弹性模量和硬度分别为155.47 GPa和2.47 GPa; 采用有限元数值模拟对纳米压痕加载过程进行反演分析, 通过对比最大模拟载荷与最大实验载荷, 确定TSV-Cu的特征应力和特征应变; 由量纲函数确定的应变强化指数为0.4892; 将上述实验结果代入幂强化模型中, 确定TSV-Cu的屈服强度为47.91 MPa. 最终确定了TSV-Cu的幂函数型弹塑性应力-应变关系.

关键词 硅通孔电镀填充铜纳米压痕弹性模量屈服强度应变强化指数    
Abstract

In 3D electronic package technologies, through silicon via (TSV) plays a critical important role. TSVs are usually fully filled by electroplating copper, namely TSV-Cu, which has very different mechanical properties from bulk copper. To obtain the mechanical properties of the TSV-Cu, the Berkovich nanoindentation tests were conducted, and the Oliver-Pharr algorithm and the continuous stiffness measurement method were used to acquire the elastic modulus and hardness. Then finite element modeling (FEM) simulations are adopted for reverse analysis of the nanoindentation loading process to determine the representative stress and strain of the TSV-Cu by comparing the maximum value of simulated load to that of experimental load. The strain hardening exponent of the TSV-Cu is determined by dimension functions. The yield strength of the TSV-Cu is acquired by substituting the representative stress, the representative strain and the strain hardening exponent into a power law stress-strain constitution. Finally, a power law elastic-plastic stress-strain relationship of TSV-Cu is built. The obtained elastic modulus and hardness of the TSV-Cu are 155.47 GPa and 2.47 GPa, respectively; the strain hardening exponent is 0.4892 and the yield strength is 47.91 MPa.

Key wordsTSV-Cu    nanoindentation    elastic modulus    yield strength    strain hardening exponent
收稿日期: 2013-12-03     
ZTFLH:  TG425.1  
基金资助:*国家自然科学基金资助项目11272018
作者简介: null

作者简介: 秦飞, 男, 1965年生, 教授

图1  硅通孔(TSV)结构示意图
图2  TSV-Cu的轴对称有限元模型
Sample E/GPa H/GPa
1 152.08 2.69
2 158.56 2.28
3 154.42 2.45
4 158.73 2.35
5 159.01 2.58
6 155.71 2.65
7 154.72 2.41
8 150.55 2.31
Average 155.47 2.47
表1  TSV-Cu的弹性模量E与硬度H
Sample Indentation test Current reverse algorithm
Wp/Wt ht/hm Error
hr/hm
%
σr
MPa
Error (σr)
%
n Error
(n)
%
εr Error (εr)
%
σy
MPa
Error (σy)
%
1 0.91284 0.93496 -0.142 491 0.204 0.4951 1.206 0.0364 -0.274 45.28 -5.49
2 0.92460 0.94345 0.765 452 -7.755 0.4182 -14.513 0.0373 2.192 70.60 47.36
3 0.91580 0.93709 0.085 487 -0.612 0.4625 -5.458 0.0370 1.370 58.00 21.06
4 0.91779 0.93853 0.239 483 -1.429 0.4817 -1.533 0.0370 1.370 47.04 -1.82
5 0.90925 0.93236 -0.420 522 6.531 0.5372 9.812 0.0353 -3.288 32.99 -31.14
6 0.91182 0.934221 -0.221 516 5.306 0.4552 -6.950 0.0374 2.466 67.46 40.81
7 0.91611 0.93732 0.110 474 -3.265 0.5249 7.298 0.0357 -2.192 31.25 -34.77
8 0.90932 0.93241 -0.414 497 1.429 0.5388 10.139 0.0356 -2.466 30.68 -35.96
Aver. 0.91469 0.93629 0.0003 490 0.0511 0.4892 0.0001 0.0365 -0.1028 47.91 0.0063
表2  反演分析结果
图3  典型的载荷-位移曲线
图4  TSV-Cu的应力-应变曲线
[1] Qin F, Wang J, Wan L X, Yu D Q, Cao L Q, Zhu W H. Semicond Technol, 2012; 37: 825
[1] (秦飞, 王珺, 万里兮, 于大全, 曹立强, 朱文辉. 半导体技术, 2012; 37: 825)
[2] Wu B, Kumar A, Pamarthy S. J Appl Phys, 2010; 108: 051101
[3] Ege E S, Shen Y L. J Electron Mater, 2003; 32: 1000
[4] Shen Y L, Ramamurty U. J Appl Phys, 2003; 93: 1806
[5] Okoro C, Vanstreels K, Labie R, Lühn O, Vandevelde B, Verlinden B, Vandepitte D. J Micromech Microeng, 2010; 20: 045032
[6] Xu L, Dixit P, Miao J, Pang J H L, Zhang X, Tu K N, Preisser R. Appl Phys Lett, 2007; 90: 033111
[7] Dixit P, Xu L, Miao J, Pang J H L, Preisser R. J Micromech Microeng, 2007; 17: 1749
[8] Li J Y, Wang H, Wang S, Wang H Y, Cheng P, Zhang Z J, Ding G F. J Fudan Univ (Nat Sci), 2012; 51: 184
[8] (李君翊, 汪红, 王溯, 王慧颖, 程萍, 张振杰, 丁桂甫. 复旦学报(自然科学版), 2012; 51: 184)
[9] Li Y S, Wang W. Acta Metall Sin, 2010; 46: 1098
[9] (黎业生, 汪伟. 金属学报, 2010; 46: 1098)
[10] Wang F J, Qian Y Y, Ma X. Acta Metall Sin, 2005; 41: 775
[10] (王凤江, 钱乙余, 马鑫. 金属学报, 2005; 41: 775)
[11] Ma Y, Yao X H, Tian L H, Zhang X Y, Shu X F, Tang B. Acta Metall Sin, 2011; 47: 321
[11] (马 永, 姚晓红, 田林海, 张翔宇, 树学峰, 唐宾. 金属学报, 2011; 47: 321)
[12] Dao M, Chollacoop N, Van Vliet K J, Venkatesh T A, Suresh S. Acta Mater, 2001; 49: 3899
[13] Tabor D. The Hardness of Metals. London: Oxford University Press, 1951: 120
[14] Choi Y, Lee H S, Kwon D. J Mater Res, 2004; 19: 3307
[15] Pethica J B, Oliver W C. Phys Scr, 1987; 19: 61
[16] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 64
[17] Pharr G M, Oliver W C. J Mater Res, 1992; 7: 613
[18] Antunes J M, Fernandes J V, Menezes L F, Chaparro B M. Acta Mater, 2007; 55: 69
[19] Lee J, Lee C, Kim B. Mater Des, 2009; 30: 3395
[20] Read D T, Cheng Y W, Geiss R. Microelectron Eng, 2004; 75: 63
[21] Xiang Y, Chen X, Vlassak J J. Mater Res Soc Symp Proc, 2002; 695: 189
[22]
[23] Ranganathan N, Prasad K, Balasubramanian N, Pey K L. J Micromech Microeng, 2008; 18: 075018
[24] Shin H A S, Kim B J, Kim J H, Hwang S H, Budiman A S, Son H Y, Byun K Y, Tamura N, Kunz M, Kim D I K, Joo Y C. J Electron Mater, 2012; 41: 712
[25] Okoro C, Labie R, Vanstreels K, Franquet A, Gonzalez M, Vandevelde B, Beyne E,Vandepitte D, Verlinden B. J Mater Sci, 2011; 46: 3868
[1] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[2] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[3] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[4] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[5] 王明康, 苑峻豪, 刘宇峰, 王清, 董闯, 张中伟. TiZr-Nb二元合金β结构稳定性和力学性能的影响[J]. 金属学报, 2021, 57(1): 95-102.
[6] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[7] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[8] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[9] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
[10] 徐宏扬,柯海波,黄火根,张培,张鹏国,刘天伟. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究[J]. 金属学报, 2017, 53(7): 817-823.
[11] 刘积厚,赵洪运,李卓霖,宋晓国,董红杰,赵一璇,冯吉才. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能[J]. 金属学报, 2017, 53(2): 227-232.
[12] 谢锐,吕铮,卢晨阳,李正元,丁学勇,刘春明. 9Cr-ODS钢中纳米析出相的SAXS和TEM研究*[J]. 金属学报, 2016, 52(9): 1053-1062.
[13] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[14] 张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
[15] 杨彪,郑百林,胡兴健,贺鹏飞,岳珠峰. 空洞对镍基单晶合金纳米压痕过程的影响*[J]. 金属学报, 2016, 52(2): 129-134.