Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 191-201    DOI: 10.3724/SP.J.1037.2013.00591
  本期目录 | 过刊浏览 |
层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*
安祥海, 吴世丁, 张哲峰()
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS
AN Xianghai, WU Shiding, ZHANG Zhefeng()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
Xianghai AN, Shiding WU, Zhefeng ZHANG. INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS[J]. Acta Metall Sin, 2014, 50(2): 191-201.

全文: PDF(11089 KB)   HTML
摘要: 

总结了层错能对Cu-Al纳米晶合金微观结构、拉伸性能和疲劳行为的影响. 研究表明: 随着层错能的降低, 材料微观结构的演化逐步从位错分割机制主导转变为孪晶碎化机制主导, 导致其平均晶粒尺寸逐步减小, 而其均匀微观结构的形成经历先难后易的转变. 同时, 发现Cu-Al纳米晶合金的强度随层错能的降低得到明显改善, 其均匀延伸率存在一最优值, 使其均匀延伸率最佳. 对不同晶粒尺寸的样品进行力学实验证实, 随层错能降低, 其强塑性匹配得到明显提升. 在循环变形过程中, 随层错能降低, 晶粒长大导致的微观组织不稳定性和高度应变局部化的剪切带均有明显改善. 材料的疲劳损伤微观机制随之从晶界迁移主导的晶粒长大逐步转变为其它晶界行为, 如原子重组、晶界滑动和转动等. 纳米材料的综合疲劳性能(低周和高周疲劳)随层错能的降低呈现同步提高的趋势.

关键词 纳米晶材料层错能微观结构拉伸性能疲劳性能    
Abstract

Influences of stacking fault energy (SFE) on the microstructures, tensile properties and fatigue behaviors of nanostructured (NS) Cu-Al alloys prepared by severe plastic deformation (SPD) were systematically summerized. With the reduction of SFE, it is found that the dominant formation mechanism of nanostructures gradually transformed from the dislocation subdivision to the twin fragmentation and the grain sizes also decrease; while microstructural homogeneity is achieved more readily in the materials with either high or low SFE than in the materials with medium SFE. The strength of NS Cu-Al significantly increases with decreasing the SFE, while there is an optimal SFE for the ductility of these materials. More significantly, the strength-ductility synergy of Cu-Al alloys is prominently enhanced with reducing the SFE. Finally, simultaneous improvements of low-cycle fatigue and high-cycle fatigue properties of NS Cu-Al alloys were achieved with decreasing the SFE. This can be attributed to the enhanced microstructure stability and the reduced strain localization in shear bands. With the reduction of SFE, the fatigue damage micro-mechanism was also transformed from grain boundary (GB) migration to other GB activities such as, atom shuffling, GB sliding and GB rotation.

Key wordsnanostructured material    stacking fault energy    microstructure    tensile property    fatigue property
收稿日期: 2013-09-18     
ZTFLH:  TG172  
基金资助:* 国家自然科学基金项目50890173, 50931005, 51101162和51331007资助
作者简介: null

安祥海, 男, 1982年生, 博士

图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
图10  
[1] Gleiter H. Prog Mater Sci, 1989; 33: 223
[2] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[3] Valiev R Z, Langdon T G.Prog Mater Sci, 2006; 51: 881
[4] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[5] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1997; 45: 4733
[6] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1998; 46: 3317
[7] Tao N R, Lu K. Scr Mater, 2009; 60: 1039
[8] Mughrabi H, Höppel H W, Kautz M. Scr Mater, 2004; 51: 807
[9] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351.
[10] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
[11] Considère A. Annales Ponts Chaussées, 1885; 9: 574
[12] Mughrabi H, Höppel H W. Int J Fatigue, 2010; 32: 1413
[13] Höppel H W, Zhou Z M, Mughrabi H, Valiev R Z. Philos Mag, 2002; 82A: 1781
[14] Wong M K, Kao W P, Lui J T, Chang C P, Kao P W. Acta Mater, 2007; 55: 715
[15] Malekjani S, Hodgson P D, Cizek P, Hilditch T B. Acta Mater, 2011; 59: 5358
[16] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[17] Estrin Y, Vinogradov A. Acta Mater, 2013; 61: 782
[18] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[19] Qu S, An X H, Yang H J, Huang C X, Yang G, Zang Q S, Wang Z G, Wu S D, Zhang Z F. Acta Mater, 2009; 57: 1586
[20] An X H, Wu S D, Zhang Z F. Mater Sci Forum, 2011; 667-669: 379
[21] Wu S D, An X H, Han W Z, Qu S, Zhang Z F. Acta Metall Sin, 2010; 46: 257
[21] (吴士丁, 安祥海, 韩卫忠, 屈 伸, 张哲峰. 金属学报, 2010; 46: 257)
[22] Balogh L, Ungár T, Zhao Y H, Zhu Y T, Horita Z, Xu C, Langdon T G. Acta Mater, 2008; 56: 809
[23] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 249
[24] Mohamed F A. Acta Mater, 2003; 51: 4107
[25] Komura S, Horita Z, Nemoto M, Langdon T G. J Mater Res, 1999; 14: 4044
[26] An X H, Lin Q Y, Wu S D, Zhang Z F. Mater Sci Eng, 2010; A527: 4510
[27] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Philos Mag, 2011; 91: 3307
[28] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2010; 63: 560
[29] Han W Z, Zhang Z F, Wu S D, Li S X. Philos Mag, 2008; 88: 3011
[30] Zhang Y, Tao N R, Lu K. Scr Mater, 2009; 60: 211
[31] Hong C S, Tao N R, Huang X, Lu K. Acta Mater, 2010; 58: 3103
[32] An X H, Lin Q Y, Qu S, Yang G, Wu S D, Zhang Z F. J Mater Res, 2009: 24: 3636
[33] An X H, Han W Z, Huang C X, Zhang P, Yang G, Wu S D, Zhang Z F. Appl Phys Lett, 2008; 92: 201915
[34] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 954
[35] Zhang Y, Tao N R, Lu K. Acta Mater, 2011; 59: 6048
[36] Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Langdon T G. Appl PhysLett, 2006; 89: 121906
[37] Zhang P, An X H, Zhang Z J, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 67: 871
[38] Zhao Y H, Guo Y Z, Wei Q, Dangelewicz A M, Xu C, Zhu Y T, Langdon T G, Zhou Y Z, Lavernia E J. Scr Mater, 2008; 59: 627
[39] Wang Y M, Chen M, Zhou F, Ma E. Nature, 2002; 419: 912
[40] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 66: 227
[41] An X H, Qu S, Wu S D, Zhang Z F. J Mater Res, 2011; 26: 407
[42] Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304: 422
[43] Lu L, Chen X, Huang X, Lu K.Science, 2009; 323: 607
[44] Shen Y, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989
[45] An X H, Wu S D, Zhang Z F. 2013, submitted
[46] Zhang Z F, Wang Z G. Acta Mater, 2003; 51: 347
[47] Zhang Z F, Wang Z G. Prog Mater Sci, 2008; 53: 1025
[48] An X H, Lin Q Y, Wu S D, Zhang Z F. Scr Mater, 2013; 68: 988
[49] Detor A J, Schuh C A. Acta Mater, 2007; 55: 4221
[50] Schäfer J, Albe K. Scr Mater, 2012; 66: 315
[51] Pan Q S, Lu Q H, Lu L. Acta Mater, 2013; 61: 1383
[52] Schiøtz J. Mater Sci Eng, 2004; A375: 975
[53] Sangid M D, Pataky G J, Sehitoglu H, Rateick R G, Niendorf T, Maier H J. Acta Mater, 2011; 59: 7340
[54] Chowdhury P B, Huseyin Sehitoglu H, Rateick R G, Maier H J. Acta Mater, 2013; 61: 2531
[55] Farkas D, Willemann M, Hyde B. Phys Rev Lett, 2005; 94: 165502
[56] Wu S D, Wang Z G, Jiang C B, Li G Y, Alexandrov I V, Valiev R Z. Scr Mater, 2003; 48: 1605
[57] Zhang Z F, Wu S D, Li Y J, Liu S M, Wang Z G. Mater Sci Eng, 2005; A412: 279
[58] Zhang Z J, An X H, Zhang P, Yang M X, Yang G, Wu S D, Zhang Z F. Scr Mater, 2013; 68: 389
[59] Pang J C, Li S X, Wang Z G, Zhang Z F. Mater Sci Eng, 2013; A564: 331
[60] Lukàš P, Kunz L, Svoboda M. Metall Mater Trans, 2007; 38A: 910
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[4] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[5] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[6] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[7] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[8] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[9] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[10] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[11] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[12] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[13] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[14] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[15] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.