Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 191-201    DOI: 10.3724/SP.J.1037.2013.00591
  论文 本期目录 | 过刊浏览 |
层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*
安祥海 吴世丁 张哲峰
(中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016)
INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS
AN Xianghai, WU Shiding, ZHANG Zhefeng
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(11089 KB)   HTML
摘要: 总结了层错能对Cu-Al纳米晶合金微观结构、拉伸性能和疲劳行为的影响. 研究表明: 随着层错能的降低, 材料微观结构的演化逐步从位错分割机制主导转变为孪晶碎化机制主导, 导致其平均晶粒尺寸逐步减小, 而其均匀微观结构的形成经历先难后易的转变. 同时, 发现Cu-Al纳米晶合金的强度随层错能的降低得到明显改善, 其均匀延伸率存在一最优值, 使其均匀延伸率最佳. 对不同晶粒尺寸的样品进行力学实验证实, 随层错能降低, 其强塑性匹配得到明显提升. 在循环变形过程中, 随层错能降低, 晶粒长大导致的微观组织不稳定性和高度应变局部化的剪切带均有明显改善. 材料的疲劳损伤微观机制随之从晶界迁移主导的晶粒长大逐步转变为其它晶界行为, 如原子重组、晶界滑动和转动等. 纳米材料的综合疲劳性能(低周和高周疲劳)随层错能的降低呈现同步提高的趋势.
关键词 纳米晶材料层错能微观结构拉伸性能疲劳性能    
Abstract:Influences of stacking fault energy (SFE) on the microstructures, tensile properties and fatigue behaviors of nanostructured (NS) Cu-Al alloys prepared by severe plastic deformation (SPD) were systematically summerized. With the reduction of SFE, it is found that the dominant formation mechanism of nanostructures gradually transformed from the dislocation subdivision to the twin fragmentation and the grain sizes also decrease; while microstructural homogeneity is achieved more readily in the materials with either high or low SFE than in the materials with medium SFE. The strength of NS Cu-Al significantly increases with decreasing the SFE, while there is an optimal SFE for the ductility of these materials. More significantly, the strength-ductility synergy of Cu-Al alloys is prominently enhanced with reducing the SFE. Finally, simultaneous improvements of low-cycle fatigue and high-cycle fatigue properties of NS Cu-Al alloys were achieved with decreasing the SFE. This can be attributed to the enhanced microstructure stability and the reduced strain localization in shear bands. With the reduction of SFE, the fatigue damage micro-mechanism was also transformed from grain boundary (GB) migration to other GB activities such as, atom shuffling, GB sliding and GB rotation.
Key wordsKEY WORDS nanostructured material    stacking fault energy    microstructure    tensile property    fatigue property
    
ZTFLH:  TG172  
基金资助:* 国家自然科学基金项目50890173, 50931005, 51101162和51331007资助
Corresponding author: ZHANG Zhefeng, professor, Tel: (024)23971043, E-mail: zhfzhang@imr.ac.cn   
作者简介: 安祥海, 男, 1982年生, 博士

引用本文:

安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
AN Xianghai, WU Shiding, ZHANG Zhefeng. INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS. Acta Metall Sin, 2014, 50(2): 191-201.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00591      或      https://www.ams.org.cn/CN/Y2014/V50/I2/191

[1] Gleiter H. Prog Mater Sci, 1989; 33: 223
[2] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[3] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
[4] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[5] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1997; 45: 4733
[6] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1998; 46: 3317
[7] Tao N R, Lu K. Scr Mater, 2009; 60: 1039
[8] Mughrabi H, H?ppel H W, Kautz M. Scr Mater, 2004; 51: 807
[9] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351.
[10] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
[11] Considère A. Annales Ponts Chaussées, 1885; 9: 574
[12] Mughrabi H, H?ppel H W. Int J Fatigue, 2010; 32: 1413
[13] H?ppel H W, Zhou Z M, Mughrabi H, Valiev R Z. Philos Mag, 2002; 82A: 1781
[14] Wong M K, Kao W P, Lui J T, Chang C P, Kao P W. Acta Mater, 2007; 55: 715
[15] Malekjani S, Hodgson P D, Cizek P, Hilditch T B. Acta Mater, 2011; 59: 5358
[16] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[17] Estrin Y, Vinogradov A. Acta Mater, 2013; 61: 782
[18] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[19] Qu S, An X H, Yang H J, Huang C X, Yang G, Zang Q S, Wang Z G, Wu S D, Zhang Z F. Acta Mater, 2009; 57: 1586
[20] An X H, Wu S D, Zhang Z F. Mater Sci Forum, 2011; 667-669: 379
[21] Wu S D, An X H, Han W Z, Qu S, Zhang Z F. Acta Metall Sin, 2010; 46: 257
(吴士丁, 安祥海, 韩卫忠, 屈 伸, 张哲峰. 金属学报, 2010; 46: 257)
[22] Balogh L, Ungár T, Zhao Y H, Zhu Y T, Horita Z, Xu C, Langdon T G. Acta Mater, 2008; 56: 809
[23] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 249
[24] Mohamed F A. Acta Mater, 2003; 51: 4107
[25] Komura S, Horita Z, Nemoto M, Langdon T G. J Mater Res, 1999; 14: 4044
[26] An X H, Lin Q Y, Wu S D, Zhang Z F. Mater Sci Eng, 2010; A527: 4510
[27] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Philos Mag, 2011; 91: 3307
[28] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2010; 63: 560
[29] Han W Z, Zhang Z F, Wu S D, Li S X. Philos Mag, 2008; 88: 3011
[30] Zhang Y, Tao N R, Lu K. Scr Mater, 2009; 60: 211
[31] Hong C S, Tao N R, Huang X, Lu K. Acta Mater, 2010; 58: 3103
[32] An X H, Lin Q Y, Qu S, Yang G, Wu S D, Zhang Z F. J Mater Res, 2009: 24: 3636
[33] An X H, Han W Z, Huang C X, Zhang P, Yang G, Wu S D, Zhang Z F. Appl Phys Lett, 2008; 92: 201915
[34] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 954
[35] Zhang Y, Tao N R, Lu K. Acta Mater, 2011; 59: 6048
[36] Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Langdon T G. Appl Phys Lett, 2006; 89: 121906
[37] Zhang P, An X H, Zhang Z J, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 67: 871
[38] Zhao Y H, Guo Y Z, Wei Q, Dangelewicz A M, Xu C, Zhu Y T, Langdon T G, Zhou Y Z, Lavernia E J. Scr Mater, 2008; 59: 627
[39] Wang Y M, Chen M, Zhou F, Ma E. Nature, 2002; 419: 912
[40] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 66: 227
[41] An X H, Qu S, Wu S D, Zhang Z F. J Mater Res, 2011; 26: 407
[42] Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304: 422
[43] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[44] Shen Y, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989
[45] An X H, Wu S D, Zhang Z F. 2013, submitted
[46] Zhang Z F, Wang Z G. Acta Mater, 2003; 51: 347
[47] Zhang Z F, Wang Z G. Prog Mater Sci, 2008; 53: 1025
[48] An X H, Lin Q Y, Wu S D, Zhang Z F. Scr Mater, 2013; 68: 988
[49] Detor A J, Schuh C A. Acta Mater, 2007; 55: 4221
[50] Sch?fer J, Albe K. Scr Mater, 2012; 66: 315
[51] Pan Q S, Lu Q H, Lu L. Acta Mater, 2013; 61: 1383
[52] Schi?tz J. Mater Sci Eng, 2004; A375: 975
[53] Sangid M D, Pataky G J, Sehitoglu H, Rateick R G, Niendorf T, Maier H J. Acta Mater, 2011; 59: 7340
[54] Chowdhury P B, Huseyin Sehitoglu H, Rateick R G, Maier H J. Acta Mater, 2013; 61: 2531
[55] Farkas D, Willemann M, Hyde B. Phys Rev Lett, 2005; 94: 165502
[56] Wu S D, Wang Z G, Jiang C B, Li G Y, Alexandrov I V, Valiev R Z. Scr Mater, 2003; 48: 1605
[57] Zhang Z F, Wu S D, Li Y J, Liu S M, Wang Z G. Mater Sci Eng, 2005; A412: 279
[58] Zhang Z J, An X H, Zhang P, Yang M X, Yang G, Wu S D, Zhang Z F. Scr Mater, 2013; 68: 389
[59] Pang J C, Li S X, Wang Z G, Zhang Z F. Mater Sci Eng, 2013; A564: 331
[60] Lukà? P, Kunz L, Svoboda M. Metall Mater Trans, 2007; 38A: 910
[1] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[2] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[3] 俞峰,陈兴品,徐海峰,董瀚,翁宇庆,曹文全. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513-522.
[4] 徐伟,黄明浩,王金亮,沈春光,张天宇,王晨充. 综述:钢中亚稳奥氏体组织与疲劳性能关系[J]. 金属学报, 2020, 56(4): 459-475.
[5] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[6] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[7] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[8] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[9] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.
[10] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[11] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.
[12] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[13] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[14] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[15] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.