Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 183-190    DOI: 10.3724/SP.J.1037.2013.00823
  本期目录 | 过刊浏览 |
纳米金属材料的界面力学行为研究*
魏宇杰()
中国科学院力学研究所非线性力学国家重点实验室, 北京 100190
INVESTIGATION OF MECHANICAL BEHAVIOR OF INTERFACES IN NANOSTRUCTURED METALS
WEI Yujie()
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanicas, Chinese Academy of Sciences,Beijing 100190
引用本文:

魏宇杰. 纳米金属材料的界面力学行为研究*[J]. 金属学报, 2014, 50(2): 183-190.
Yujie WEI. INVESTIGATION OF MECHANICAL BEHAVIOR OF INTERFACES IN NANOSTRUCTURED METALS[J]. Acta Metall Sin, 2014, 50(2): 183-190.

全文: PDF(3419 KB)   HTML
摘要: 

?将常规多晶材料的粗晶粒尺寸缩小到纳米尺度时, 这些纳米晶体材料会呈现出与其对应的粗晶材料迥异的物理现象. 与材料力学行为最相关的是强度及塑形变形机理这两个方面. 考虑到晶界的变形与破坏可能是纳米晶体材料低塑性的根源, 克服纳米晶体材料中强度与韧性之间存在的“熊掌和鱼不可兼得”的问题, 也通常称为晶界工程. 在众多的晶界中, 孪晶界面被发现可同时保持材料的强度和韧性. 本文主要就纳米金属材料中界面的力学行为做一个简要综述, 包含晶界的强化力学机理以及新型孪晶界面的力学行为与揭示内在尺度效应的模型研究.

关键词 纳米晶体晶界/孪晶界强度/塑性力学模型    
Abstract

When grain sizes of crystals are down to nano-scale, the so-called nanocrystalline materials exhibit distinct physical properties in contrast to their conventional counterparts. The strength and plastic deformation mechanisms were among the most broadly investigated properties from mechanical society. Since deformation and pre-mature failure in interfaces (including grain boundaries, twin boundaries, and interfaces between different media) could be the origin of low ductility in nanocrystalline materials, the effort to evade the strength-ductility trade-off dilemma in nanocrystalline materials, by tuning their interfacial structures/properties, is usually called as interfacial engineering. Twin boundaries stand out among all possible boundary structures for their capability to enhance strength and retain ductility of crystalline metals. In this paper, current understanding about the mechanical behavior associated with interfaces in nanostructured metals is reviewed, with a focus on the strengthening mechanisms played by twin/grain boundaries and current physical models to shed light on the size-effect induced by grain sizes and twin thicknesses.

Key wordsnanocrystal    grain boundary/twin boundary    strength/ductility    mechanical model
收稿日期: 2013-12-19     
ZTFLH:  TG113.2  
基金资助:* 国家重点基础研究发展计划项目2012CB937500, 国家自然科学基金项目11021262和11272327, 以及中国科学院百人计划项目资助
作者简介: null

魏宇杰, 男, 1974年生, 研究员, 博士

图1  
图2  
图3  
图4  
图5  
[1] Feynman R. Caltech Eng Sci, 1960; 23: 22
[2] Taniguchi N. Proc Int Conf Prod Eng Tokyo, Part II, Tokyo: Japan Society of Precision Engineering, 1974: 18
[3] Gleiter H. In: Hansen N, Leffers T, Lilholt H, eds., Proc 2nd Riso International Symposium on Metallurgy and Materials Science, Roskilde: Riso National Laboratory, 1981: 15
[4] Gleiter H. Progress Mater Sci, 1989; 33: 223
[5] Hall E O. Proc Phys Soc, 1951; 64B: 747
[6] Petch N J. J Iron Steel Inst, 1953; 174: 25
[7] Peirls R. Proc Phys Soc, 1940; 52: 34
[8] Cottrell A H. Trans Metall Soc AIME, 1958; 212: 192
[9] Li J C M. Trans Metall Soc AIME, 1963; 227: 239
[10] Coble R L. J Appl Phys, 1963; 34: 1679
[11] Koch C C. Structural Nanocrystalline Materials: Fundamentals and Applications. Cambridge: Cambridge University Press, 2007
[12] Tjong S C. Nanocrystalline Materials: Their Synthesis-Structure-Property Relationships and Applications. London: Newnes, 2013
[13] Kumar K S, Van Swygenhoven H, Suresh S. Acta Mater, 2003; 51: 5743
[14] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
[15] Zhu T T, Bushby A J, Dunstan D J. Mater Technol, 2008; 23: 193
[16] Dao M, Lu L, Asaro R J, De Hosson J T M, Ma E. Acta Mater, 2007; 55: 4041
[17] Wolf D, Yamakov V, Phillpot S R, Mukherjee A K, Gleiter H. Acta Mater, 2005; 53: 1
[18] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H. Nat Mater, 2004; 3: 43
[19] Zhu T, Li J. Prog Mater Sci, 2010; 55: 710
[20] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[21] Zhu Y T, Liao X Z, Wu X L. Prog Mater Sci, 2012; 57: 1
[22] Wei Y J. PhD Dissertation, Massachusetts Institute of Technology, 2006
[23] Asaro R J, Krysl P, Kad B. Philos Mag Lett, 2003; 83: 733
[24] Zhu B, Asaro R J, Krysl P, Bailey R. Acta Mater, 2005; 53: 4825
[25] Asaro R J, Suresh S. Acta Mater, 2005; 53: 3369
[26] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[27] Lu L, Sui M L, Lu K. Science, 2000; 287: 1463
[28] Wang H, Yang W. J Mech Phys Solids, 2004; 52: 1151
[29] Yang W, Wang H. J Mech Phys Solids, 2004; 52: 875
[30] Wei Y J, Gao H J. Mater Sci Eng, 2008; A478: 16
[31] Wei Y J, Anand L. J Mech Phys Solids, 2004; 52: 2587
[32] Wei Y J, Su C, Anand L. Acta Mater, 2006; 54: 3177
[33] Wei Y J, Bower A F, Gao H J. J Mech Phys Solids, 2008; 56: 1460
[34] Wei Y J, Bower A F, Gao H J. Acta Mater, 2008; 56: 1741
[35] Schiotz J, Tolla F D D, Jacobsen K W. Nature, 1998; 39: 561
[36] Li X Y, WeiY J, Yang W, Gao H J. Proc Nat Acad Sci USA, 2009; 106: 16108
[37] Ma E. JOM, 2006; 58: 49
[38] Hull D, Bacon D J. Introduction to Dislocations V. Oxford: Butterworth-Heinemann, 2011: 171
[39] Wu J T, Wei Y J. J Mech Phys Solids, 2013; 61: 1421
[40] Kumar K S, Suresh S, Chisolm M F, Horton J A, Wang P. Acta Mater, 2003; 51: 387
[41] Yip S. Nat Mater, 2004; 3: 11
[42] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351
[43] Liddicoat P V, Liao X Z, Zhao Y H, Zhu Y T, Murashkin M Y, Lavernia E J, Valiev R Z, Ringer S P. Nat Comm, 2010; 1: No.63
[44] Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304: 422
[45] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[46] Li X Y, WeiY J, Lu K, Lu L, Gao H J. Nature, 2010; 464: 877
[47] Zhou H F, Qu S X, Yang W. Model Simul Mater Sci Eng, 2010; 18: 065002
[48] Wei Y J. Phys Rev, 2011; 84B: 014107
[49] Idrissi H, Wang B J, Colla M S, Raskin J P, Schryvers D, Pardoen T. Adv Mater, 2011; 23 : 2119
[50] Jang D, Li X, Gao H, Greer J R. Nat Nanotechnol, 2012; 7: 594
[51] Greer J R. Nat Mater, 2013; 12: 689
[52] Bufford D, Wang H, Zhang X. Acta Mater, 2011; 59: 93
[53] Kulkarni Y, Asaro R J. Acta Mater, 2009; 57: 4835
[54] Zhang J J, Wei Y J, Sun T, Hartmaier A, Yan Y, Li X D. Phys Rev, 2012; 85B: 054109
[55] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y. Nature, 2013; 493: 385
[56] Wang J W, Sansoz F, Huang J Y, Liu Y, Sun S H, Zhang Z, Mao S X. Nat Commun, 2013; 4: No.1742
[57] Zhu L, Kou H, Lu J. Appl Phys Lett, 2012; 101: 081906
[58] Wang H T, Tao N R, Lu K. Acta Mater, 2012; 60: 4027
[59] Li Y Q, Zhu L C, Liu Y, Wei Y J, Wu Y X, Tang D, Mi Z L. J Mech Phys Solids, 2013; 61: 2588
[60] Lu L, Lu K. Acta Metall Sin, 2010; 46: 1422
[60] (卢 磊, 卢 柯. 金属学报, 2010; 46: 1422)
[61] Zhu T, Gao H J. Scr Mater, 2012; 66: 843
[62] Jin Z H. Scr Mater, 2006; 54: 1163
[63] Jin Z H. Acta Mater, 2008; 56: 1126
[64] Ni S, Wang Y, Liao X, Figueiredo R, Li H, Ringer S, Langdon T, Zhu Y. Acta Mater, 2012; 60: 3181
[65] You Z S, Lu L, Lu K. Acta Mater, 2011; 59: 6927
[66] Matthews J W, Blakeslee A E. J Cryst Growth, 1975; 29: 273
[67] Freund L B. J Appl Mech, 1987; 54: 553
[68] Nix W. Metall Mater Trans, 1989; 20A: 2217
[69] Hosford W F. Mechanical Behavior of Materials. Cambridge:Cambridge University Press, 2005: 164
[70] Wei Y J. Mater Sci Eng, 2011; A528: 1558
[71] Wei Y J. Phys Rev, 2011; 83B: 132104
[72] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
[72] Liu X C, Zhang H W, Lu K. Science, 2013; 342: 337
[73] Lu X L, Lu Q H, Li Y, Lu L. Scientific Reports, 2013; 3: No.3319
[1] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[2] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[3] 许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
[4] 王斌,刘振宇,周晓光,王国栋. 超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算[J]. 金属学报, 2013, 49(1): 26-34.
[5] 刘娟 李居强 崔振山 阮立群. 新的单参数动态再结晶动力学建模及晶粒尺寸预测[J]. 金属学报, 2012, 48(12): 1510-1519.
[6] 余勇 潘晓霞. Frank-Read位错源的细观级模拟[J]. 金属学报, 2009, 45(11): 1309-1313.
[7] 蒋光锐; 刘源; 李言祥 . 铝合金熔体中氢溶解度的计算模型[J]. 金属学报, 2008, 44(2): 129-133 .
[8] 谢丹; 汪明朴; 齐卫宏; 曹玲飞 . 金属纳米晶体熔化与过热的等效模型[J]. 金属学报, 2005, 41(5): 458-462 .
[9] 李钒; 张登君; 李报厚; 罗世民 . 六方BN微颗粒表面化学镀Ni及动力学模型[J]. 金属学报, 2004, 40(2): 173-178 .
[10] 陈福义; 介万奇 . Al-Cu-Zn合金溶质分凝的热力学模型[J]. 金属学报, 2003, 39(6): 597-600 .
[11] 陈福义; 介万奇 . 利用短程序改进Al-Cu熔体的热力学模型[J]. 金属学报, 2003, 39(6): 601-604 .
[12] 潘洪平; 丁志勇; 董原生; 谢水生 . 半固态AlSi7Mg合金的触变力学模型研究[J]. 金属学报, 2003, 39(4): 369-374 .
[13] 乐启炽; 张新建; 崔建忠; 路贵民 . 金属合金溶液热力学模型研究进展[J]. 金属学报, 2003, 39(1): 35-42 .
[14] 乔桂英; 荆天辅; 肖福仁; 高聿为 . 脉冲电沉积块体纳米晶Co-Ni合金微观组织结构的研究[J]. 金属学报, 2001, 37(8): 815-819 .
[15] 冯淦; 石连捷 . 低碳钢超声喷丸表面纳米化的研究[J]. 金属学报, 2000, 36(3): 300-303 .