Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 202-211    DOI: 10.3724/SP.J.1037.2013.00604
  本期目录 | 过刊浏览 |
纳米晶金属材料的高温腐蚀行为*
彭晓(), 王福会
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳110016
HIGH TEMPERATURE CORROSION OF NANO-CRYSTALLINE METALLIC MATERIALS
PENG Xiao(), WANG Fuhui
State Key Laboratory for Corrosion and Protection, Chinese Academy of Sciences, Shenyang 110016
引用本文:

彭晓, 王福会. 纳米晶金属材料的高温腐蚀行为*[J]. 金属学报, 2014, 50(2): 202-211.
Xiao PENG, Fuhui WANG. HIGH TEMPERATURE CORROSION OF NANO-CRYSTALLINE METALLIC MATERIALS[J]. Acta Metall Sin, 2014, 50(2): 202-211.

全文: PDF(4276 KB)   HTML
摘要: 

一些金属基结构材料, 不需要增加Cr和Al含量而只需“纳米晶化”, 就能够在高温环境下形成保护性Cr2O3或Al2O3氧化膜. 纳米晶化是施加高Cr高Al涂层之外提高金属材料抗高温腐蚀性能的另一途径. 近20年来, 纳米晶金属材料的高温腐蚀行为已广泛报道. 本文简要评述了纳米晶金属材料的高温腐蚀特性、纳米晶化提高金属抗氧化性能的根本原因以及亟待澄清的问题.

关键词 纳米晶合金高温腐蚀选择性氧化黏附性    
Abstract

Some structural metallic materials, with only necessary to?be?“nanocrystallized” rather than to be increased with the contents of Cr and Al, have the ability to thermally grow a protective scale of Cr2O3 and Al2O3 at high temperature environments. Nanocrystallizationof alloys containing Cr or/and Al is an alternative to conventionally coating them with a high-Cr or/and high-Al material. High temperature corrosion behaviors of nanocrystalline metallic materials have been extensively reported in the past 20 years. In this paper, characteristics of high temperature corrosion of nanocrystalline metals, together with the fundamental reasons and questions desired to be clarified for the improvement of the corrosion resistance of alloys by nanocrystallization, were briefly reviewed.

Key wordsnanocrystalline    alloy    high temperature corrosion    selective oxidation    adhesion
收稿日期: 2013-09-22     
ZTFLH:  TG172.5  
基金资助:*国家自然科学基金资助项目51271189
作者简介: null

彭 晓, 男, 1967年生, 研究员, 博士

图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
图10  
图11  
[1] Kofstad P. High Temperature Corrosion. London: Elsevier Applied Science, 1988: 1
[2] Nicholls J R, Simms N J, Chan W Y, Evans H E. Surf Coat Technol, 2002; 149: 236
[3] Peng X. In: Xu H, Guo H eds., Thermal Barrier Coatings. Cambridge, England: Woodhead Pub. Ltd., 2011: 53
[4] Kelly F C. Trans Electrochem Soc, 1923; 43: 351
[5] Samuel R L, Lockidngton N A. Met Treatment Drop Forging, 1951; 18: 354
[6] Drewett R. Anti-Corros Methods Mater, 1969; 16: 543
[7] Goward G W. Surf Coat Technol, 1998; 108-109: 73
[8] Geib F D, Rapp R A. Oxid Met, 1993; 40: 213
[9] Nicholls J R, Hancock P, Al Yasiri L H. Mater Sci Technol, 1989; 5: 799
[10] Evans D J, Elam R C. US Patent, 3.676.085, 1972
[11] Ajdelsztajn L, Picas J A, Kim G E, Bastian F L, Schoenung J, Provenzano V. Mater Sci Eng, 2002; A338: 33
[12] Giggins C S, Pettit F S. Trans TMS-AIME, 1969; 245: 2509
[13] Wang F, Lou H. Mater Sci Eng, 1990; A43: 279
[14] Peng X, Wang F. In: Gao W, Li Z eds., Developments in High-temperature Corrosion and Protection of Materials. Cambridge, England: Woodhead Pub. Ltd., 2009: 456
[15] Umemote M, Todaka Y, Tsuchiya K. Mater Trans, 2003; 44: 1488
[16] Tao N R, Sui M L, Lu J, Lu K. Nanostruct Mater, 1999; 11: 4
[17] Tong W P, Tao N R, Wang Z B, Lu J, Lu K. Science, 2003; 229: 686
[18] Yavari A R. Mater Trans, 1995; 36: 228
[19] Peng X. Nanoscale, 2010; 2: 262
[20] Zhang Y, Peng X, Wang F H. Mater Lett, 2004; 58: 1134
[21] Zhou Y, Peng X, Wang F H. Scr Mater, 2004; 50: 1429
[22] Zhang C, Peng X, Zhao J, Wang F H. J Electrochem Soc, 2005; 152: B321
[23] Douglass D L. Corros Sci, 1968; 8: 665
[24] Chen G F, Lou H Y. Mater Lett, 2002; 45: 286
[25] Singh R R K, Khanna A S, Tiwari R K, Gnanamoorttsy J B. Oxid Met, 1992; 37: 1
[26] Singh R R K, Gnanamoorttsy J B. Oxid Met, 1992; 38: 483
[27] Singh R R K, Gnanamoorttsy J B, Roy S K. Oxid Met, 1994; 42: 335
[28] Wagner C Z. Elektrochem, 1959; 63: 772
[29] Liu Z, Gao W, Dahm K L, Wang F. Acta Mater, 1998; 46: 1691
[30] Peng X, Wang F H. Corros Sci, 2003; 45: 2293
[31] Dong Z, Peng X, Guan Y, Li L, Wang F H. Corros Sci, 2012; 62: 147
[32] Huang Z, Peng X, Xu C, Wang F H. J Mater Res, 2007; 22: 3166
[33] Huang Z, Peng X, Xu C, Wang F H. J Electrochem Soc, 2009; 156: C95
[34] Wang F H, Tian X, Li Q, Li L, Peng X. Thin Solid Films, 2008; 516: 5740
[35] Yang X, Peng X, Wang F H. J Electrochem Soc, 2009; 156: C167
[36] Wagner C. J Electrochem Soc, 1952; 99: 369
[37] Lou H, Zhu S, Wang F H. Oxid Met, 1995; 43: 317
[38] Peng X, Li M, Wang F H. Corros Sci, 2011; 53: 1616
[39] Peng X, Yan J, Zhou Y, Wang F H. Acta Mater, 2005; 53: 5079
[40] Geng S, Eang F, Zhu S, Wu W. Oxid Met, 2002; 57: 549
[41] Yang X, Peng X, Wang F H. Scr Mater, 2007; 56: 891
[42] Wang F, Lou H, Zhu S, Wu W. Oxid Met, 1996; 45: 39
[43] Yang S, Wang F, Sun Z, Zhu S. Intermetallics, 2002; 10: 467
[44] Funkenbush A M, Smeggil J G, Smeggil N S. Metall Trans, 1985; 16A: 1164
[45] Lees D G. Oxid Met,1987; 27: 75
[46] Hou P Y. Annu Rev Mater Res, 2008; 38: 275
[47] Li Q, Peng X, Zhang J Q, Zong G X, Wang F H. Corros Sci, 2010; 52: 1213
[48] Evans A G, Crymley G B, Demaray R E. Oxid Met, 1983; 20: 193
[49] Suo Z. J Mech Phys Solids, 1995; 43: 829
[50] Christensen R J, Lipkin D M, Clarke D R. Acta Mater, 1996; 44: 3813
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[7] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[8] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[9] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[10] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[11] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[12] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[13] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[14] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[15] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.