Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 226-230    DOI: 10.3724/SP.J.1037.2013.00570
  论文 本期目录 | 过刊浏览 |
利用分子动力学研究梯度纳米孪晶Cu的微观变形机理*
周昊飞 曲绍兴
(浙江大学工程力学系, 杭州 310027)
INVESTIGATION OF ATOMISTIC DEFORMATION MECHANISM OF GRADIENT NANOTWINNED COPPER USING MOLECULAR DYNAMICS SIMULATION METHOD
ZHOU Haofei, QU Shaoxing
Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027
全文: PDF(3765 KB)   HTML
摘要: 提出了一种新的纳米结构材料即梯度纳米孪晶界结构, 并利用分子动力学方法计算了梯度纳米孪晶Cu的单轴拉伸和压痕的变形过程, 分析了纳米孪晶界分布对位错机制的影响. 结果表明, 梯度纳米孪晶界主导的塑性变形可分为2类, 不全位错主导了较厚的孪晶片层的塑性变形, 较细孪晶片层的塑性变形由全位错主导. 此外, 提高孪晶界密度可以有效改善材料的强度和硬度.
关键词 分子动力学纳米孪晶界位错强度    
Abstract:Strengthening by twin boundaries at nanoscale and gradient surface nanocrystallization are two important strengthening approaches recently drawing considerable attention in the field of metallic material research. In the present work, a novel nanostructure, i.e., gradient nanoscale twin boundaries, is proposed. To reveal their unique deformation mechanism, uniaxial tension simulations of gradient nanotwinned copper are investigated by molecular dynamics simulations. The results show that partial dislocations govern the deformation of relatively thicker twins while full dislocations control the deformation of relatively thinner twin layers. Nanoindentation processes of gradient nanotwinned copper are also performed, providing insights on the strengthening and hardening effects of nanoscale twin boundaries.
Key wordsKEY WORDS molecular dynamics    nanoscale twin boundary    dislocation    strength
    
ZTFLH:  TG113.25  
基金资助:* 国家自然科学基金项目11172264和11222218及浙江省重点科技创新团队计划项目2009R50010资助
Corresponding author: QU Shaoxing, professor, Tel: (0571) 87952024, E-mail: squ@zju.edu.cn   
作者简介: 周昊飞, 男, 1986年生, 博士

引用本文:

周昊飞, 曲绍兴. 利用分子动力学研究梯度纳米孪晶Cu的微观变形机理*[J]. 金属学报, 2014, 50(2): 226-230.
ZHOU Haofei, QU Shaoxing. INVESTIGATION OF ATOMISTIC DEFORMATION MECHANISM OF GRADIENT NANOTWINNED COPPER USING MOLECULAR DYNAMICS SIMULATION METHOD. Acta Metall Sin, 2014, 50(2): 226-230.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00570      或      https://www.ams.org.cn/CN/Y2014/V50/I2/226

[1] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
[2] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[3] Wang Y B, Sui M L. Appl Phys Lett, 2009; 94: 021909
[4] Qin E W, Lu L, Tao N R, Lu K. Scr Mater, 2009; 60: 539
[5] Shan Z W, Lu L, Minor A M, Stach E A, Mao S W. JOM, 2008; 60: 71
[6] Cao A J, Wei Y G. J Appl Phys, 2007; 102: 083511
[7] Dao M, Lu L, Shen Y F, Suresh S. Acta Mater, 2006; 54: 5421
[8] Zhu T, Li J, Samanta A, Kim H G, Suresh S. PNAS, 2007; 104: 3031
[9] Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
[10] Li X Y, Wei Y J, Lu L, Lu K, Gao H J. Nature, 2010; 464: 877
[11] Zhou H F, Qu S X, Yang W. Modell Simul Mater Sci Eng, 2010; 18: 065002
[12] Qu S X, Zhou H F. Scr Mater, 2011; 65: 265
[13] Qu S X, Zhou H F, Huang Z L. Scr Mater, 2011; 65: 715
[14] Gleiter H. Acta Mater, 2000; 48: 1
[15] Kumar K S, Swygenhoven H V, Suresh S. Acta Mater, 2003; 51: 5743
[16] Chen J, Lu L, Lu K. Scr Mater, 2006; 54: 1913
[17] Knapp J A, Follstaedt D M. J Mater Res, 2004; 19: 218
[18] Schuh C A, Nieh T G, Iwasaki H. Acta Mater, 2003; 51: 431
[19] Li H Q, Ebrihimi F. Acta Mater, 2006; 54: 2877
[20] Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S. Acta Mater, 2003; 51: 5159
[21] Hanlon T, Kwon Y N, Suresh S. Scr Mater, 2003; 49: 675
[22] Witney A B, Sanders P G, Weertman J R. Scr Mater, 1995; 33: 2025
[23] Bellemare S C, Dao M, Suresh S. Mech Mater, 2008; 40: 206
[24] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
[25] Honeycutt J D, Andersen H C. J Phys Chem, 1987; 91: 4950
[26] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D. Phys Rev, 2001; 63B: 224106
[27] Qu S X, Wang G M, Zhou H F, Huang Z L. Comput Mater Sci, 2011; 50: 1567
[1] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[2] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[3] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[4] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[5] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[6] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[7] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[8] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[12] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[13] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[14] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[15] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.