Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 219-225    DOI: 10.3724/SP.J.1037.2013.00737
  本期目录 | 过刊浏览 |
纳米晶Al薄膜Bauschinger效应的分子动力学模拟*
李晓雁1,2()
1 School of Engineering, Brown University, Providence, RI 02912, USA
2 清华大学工程力学系先进力学与材料研究中心, 北京100084
ATOMISTIC SIMULATIONS OF BAUSCHINGER EFFECT IN NANOCRYSTALLINE ALUMINUM THIN FILMS
LI Xiaoyan1,2()
1 School of Engineering, Brown University, Providence, RI 02912, USA
2 Centre for Advanced Mechanics and Materials, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084
引用本文:

李晓雁. 纳米晶Al薄膜Bauschinger效应的分子动力学模拟*[J]. 金属学报, 2014, 50(2): 219-225.
Xiaoyan LI. ATOMISTIC SIMULATIONS OF BAUSCHINGER EFFECT IN NANOCRYSTALLINE ALUMINUM THIN FILMS[J]. Acta Metall Sin, 2014, 50(2): 219-225.

全文: PDF(5303 KB)   HTML
摘要: 

运用大规模的分子动力学模拟研究了厚度和晶粒取向对纳米晶Al薄膜Bauschinger效应的影响. 模拟结果表明: 晶粒取向的不均匀性对早期Bauschinger效应及相关塑性变形机制有显著的影响. 相对于没有织构的薄膜试样而言, 尽管晶粒尺寸、形状和厚度相同, 具有(110)织构的薄膜表现出较轻微的Bauschinger效应. 同时, 分子动力学模拟也揭示早期Bauschinger效应起源于卸载过程中位错的反向运动和由于位错反应造成位错密度的降低. 这些位错机制是由加载过程中产生的不均匀变形引起的内在残余应力所驱动的.

关键词 纳米晶Al薄膜Bauschinger效应位错塑性变形原子尺度模拟    
Abstract

The early Bauschinger effect in nanocrystalline Al thin films with different thicknesses and microstructural orientations was investigated using large-scale atomistic simulations. The simulation results indicate that the microstructural orientation heterogeneity has a significant influence on the early Bauschinger effect and the associated plastic deformation mechanisms. The (110)-textured thin films show less Bauschinger effect compared to non-textured films despite having the same grain size, shape and thickness. The atomistic simulations reveal that the early Bauschinger effect originates from the reverse motion of dislocations and the reduction in dislocation density due to dislocation reactions during unloading, which are driven by the internal residual stress caused by the inhomogeneous deformation during loading.

Key wordsnanocrystalline aluminum thin film    Bauschinger effect    dislocation    plastic deformation    atomistic simulation
收稿日期: 2013-11-15     
ZTFLH:  TG146.1  
基金资助:*美国自然科学基金项目DMR-0520651, CMMI-0758535和MSS090046资助
作者简介: null

李晓雁, 男, 1980年生, 副研究员

图1  
图2  
图3  
图4  
图5  
[1] Lu K, Zhou F. Acta Metall Sin, 1997; 33: 99
[1] (卢 柯, 周 飞. 金属学报, 1997; 33: 99)
[2] Kumar K S, Van Swygenhoven H, Suresh S. Acta Mater, 2003; 51: 5743
[3] Yamakov V, Wolf D, Philpot S R, Mukherjee A K, Gleiter H. Nat Mater, 2004; 3: 43
[4] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
[5] Van Swygenhoven H, Weertman J R. Mater Today, 2006; 9: 24
[6] Wu X, Zhu Y T, Chen M W, Ma E. Scr Mater, 2006; 54: 1685
[7] Legros M, Gianola D S, Hemker K J. Acta Mater, 2008; 56: 3380
[8] Lu L, Sui M L, Lu K. Science, 2000; 287: 1463
[9] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[10] Yang W, Wang H T. J Mech Phys Solids, 2004; 52: 875
[11] Wang H T, Yang W. J Mech Phys Solids, 2004; 52: 1151
[12] Hall E O. Proc Phys Soc, 1951; 51B: 747
[13] Petch H J. J Iron Steel Inst, 1953; 174: 25
[14] Chokshi A H, Rosen A, Karch J, Gleiter H. Scr Metall, 1989; 23: 1679
[15] Schiotz J, Jacobsen K W. Science, 2003; 301: 1357
[16] Jiang Z, Liu X, Li G, Jiang Q, Lian J. Appl Phys Lett, 2006; 88: 143115
[17] Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S. Acta Mater, 2003; 51: 5159
[18] Wang Y M, Hamza A V, Ma E. Acta Mater, 2006; 54: 2715
[19] Wei Y J, Bower A F, Gao H J. Acta Mater, 2008; 56: 1741
[20] Zhang K, Weertman J R, Eastman J A. Appl Phys Lett, 2005; 87: 061921
[21] Gianola D S, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker K J. Acta Mater, 2006; 54: 2253
[22] Rajagopalan J, Han J H, Saif M T A. Science, 2007; 315: 1831
[23] Rajagopalan J, Han J H, Saif M T A. Scr Mater, 2008; 59: 921
[24] Li X Y, Wei Y J, Yang W, Gao H J. Proc Natl Acad Sci USA, 2009; 106: 16108
[25] Margolin H, Hazaveh F, Yaguchi H. Scr Metall, 1978; 12: 1141
[26] Ono N, Tsuchikawa T, Nishimura S, Karashima S. Mater Sci Eng, 1983; 59: 223
[27] Baker S P, Keller-Flaig R M, Shu J B. Acta Mater, 2003; 51: 3019
[28] Xiang Y, Vlassak J J. Scr Mater, 2005; 53: 177
[29] Nicola, L, Xiang Y, Vlassak J J, Van der Giessen E, Needleman A. J Mech Phys Solids, 2006; 54: 2089
[30] Stoltz R E, Pelloux R M. Metall Trans, 1976; 7A: 1295
[31] Aran A, Demirkol M, Karabulut A. Mater Sci Eng, 1987; 89: L35
[32] Rajagopalan J, Rentenberger C, Karnthealer H P, Dehm G, Saif M T A. Acta Mater, 2010; 58: 4772
[33] Espinosa H D, Panico M, Berbenni S, Schwarz K W. Int J Plast, 2006; 22: 2091
[34] Fang H, Horstemeyer M F, Baskes M I, Solanki K. Comput Method Appl Mech Eng, 2004; 193: 1789
[35] Mishin M, Farkas D, Mehl M J, Papaconstantopoulos D A. Phys Rev, 1999; 59B: 3393
[36] Nose S A. J Chem Phys, 1984; 81: 511
[37] Tuckerman M, Berne B J, Mantyna G J. J Chem Phys, 1992; 97: 1990
[38] Van Swygenhoven H, Farkas D, Caro A. Phys Rev, 2000; 62B: 831
[39] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H. Nat Mater, 2002; 1: 45
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[3] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[4] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[5] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[6] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[7] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[8] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[9] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[10] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[11] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[12] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[13] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[14] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[15] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.