Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1501-1507    DOI: 10.3724/SP.J.1037.2013.00349
  论文 本期目录 | 过刊浏览 |
显微组织对新型热轧纳米析出强化钢断裂韧性的影响
孙茜1),王晓南2),章顺虎2),杜林秀3),邸洪双3)
1) 沈阳飞机工业(集团)有限公司, 沈阳110034
2) 苏州大学沙钢钢铁学院, 苏州215021
3) 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳110819
EFFECT OF MICROSTRUCTURE ON FRACTURE TOUGHNESS OF NEW TYPE HOT—ROLLED NANO—SCALE PRECIPITATION STRENGTHENING STEEL
SUN Qian1), WANG Xiaonan2), ZHANG Shunhu2), DU Linxiu3), DI Hongshuang 3)
1) Shenyang Aircraft Corporation, Shenyang 110034
2) Shagang School of Iron and Steel, Soochow University, Suzhou 215021
3) State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

孙茜,王晓南,章顺虎,杜林秀,邸洪双. 显微组织对新型热轧纳米析出强化钢断裂韧性的影响[J]. 金属学报, 2013, 49(12): 1501-1507.
SUN Qian, WANG Xiaonan, ZHANG Shunhu, DU Linxiu, DI Hongshuang. EFFECT OF MICROSTRUCTURE ON FRACTURE TOUGHNESS OF NEW TYPE HOT—ROLLED NANO—SCALE PRECIPITATION STRENGTHENING STEEL[J]. Acta Metall Sin, 2013, 49(12): 1501-1507.

全文: PDF(3155 KB)  
摘要: 

以抗拉强度700和780 MPa级新型热轧纳米析出强化钢为研究对象,通过裂纹尖端张开位移法实验评价其断裂韧性, 探讨显微组织类型、大角度晶界、位错密度及纳米尺寸析出物对断裂韧性的影响机理. 结果表明, 实验温度为室温、-10和-30℃时, 700 MPa级钢的条件启裂值δQ0.2BLδ0.2均大于780 MPa级钢,700 MPa级钢的断裂韧性优于780 MPa级钢. 700 MPa级钢与780 MPa级钢的显微组织差异主要包含4个方面:(1) 700 MPa级钢的显微组织以铁素体为主, 而780 MPa级钢的显微组织以贝氏体铁素体为主;(2) 700 MPa级钢中的碳化物形态为颗粒状或短棒状, 而780 MPa级钢中的碳化物以长条状为主;(3) 780 MPa级钢的位错密度显著高于700 MPa级钢;(4) 700和780 MPa级钢中的大角度晶界比例分别为85.6%和76.8%. 因此,提高铁素体体积分数和大角度晶界比例、细化碳化物尺寸及降低位错密度可有效提高钢板的断裂韧性;700和780 MPa级钢显微组织中粗大析出物(Nb, Ti)CN及晶界析出物会使钢板韧性恶化,铁素体或贝氏体基体上半共格析出的纳米尺度(Nb, Ti)C对韧性损害较小.

关键词 超高强钢断裂韧性显微组织纳米析出    
Abstract

The fracture toughness of new type hot—rolled nano—scale precipitation strengthening steels (tensile strength of 700 MPa grade and 780 MPa grade) were evaluated by crack tip opening displacement (CTOD) experiments, and the influence mechanisms of microstructure, high angle grain boundaries, dislocation density and nano—scale precipitation on fracture toughness were discussed. The results indicated, when experimental temperature were room temperature, -10 and -30℃, the δQ0.2BL value of 700 MPa grade carriage strip were 0.468, 0.333 and 0.248 mm, and the δ0.2 value of 700 MPa grade carriage strip were 0.298, 0.234 and 0.215 mm, respectively. However, the δQ0.2BL value of 780 MPa grade crossbeam strip were 0.311, 0.290 and 0.247 mm, and the δ0.2 value of 780 MPa grade crossbeam strip were 0.212, 0.212 and 0.198 mm, respectively. Therefore, the fracture toughness of 700 MPa grade steel was better than 780 MPa grade steel. The differences of microstructure between 700 MPa grade steel and 780 MPa grade steel mainly included four aspects: (1) the microstructure of 700 MPa grade steel was mainly ferrite, while the microstructure of 780 MPa grade steel was mainly bainitic ferrite; (2) the carbide shape of 700 MPa grade steel was granular or short rod, and 780 MPa grade steel was strip carbide; (3) the dislocation density of 780 MPa grade steel was significantly higher than 700 MPa grade steel; (4) the proportion of large—angle grain boundaries of 700 MPa grade steel and 780 MPa grade steel were 85.6 % and 76.8%, respectively. Therefore, improving the volume fraction of ferrite and the proportion of high angle grain boundaries, refining carbide size and reducing dislocation density could effectively improve the fracture toughness of steels. Coarse precipitation (Nb, Ti)CN and grain boundary precipitation in microstructure deteriorated fracture toughness of steel, and semi—coherent precipitates nano—scale (Nb, Ti)C on ferrite or bainite matrix have less damaging effect on fracture toughness.

Key wordsultra—high strength steel    fracture toughness    microstructure    nano—scale precipitation
收稿日期: 2013-06-25     
基金资助:

国家重点基础研究发展计划项目2011CB606306—2, 国家自然科学基金项目51305285和江苏省基础研究计划项目BK20130315资助

作者简介: 孙茜, 女, 1985年生, 助理工程师

[1] Zhong Q P, Zhao Z H.  Fractography. Beijing: Higher Education Press, 2006: 244

(钟群鹏, 赵子华. 断口学. 北京: 高等教育出版社, 2006: 244)
[2] Lacroix G, Pardoen T, Jacques P J.  Acta Mater, 2008; 56: 3900
[3] Chen X, Li Y X, Fu H G.  Acta Metall Sin, 2005; 41: 1061
(陈祥, 李言祥, 符寒光. 金属学报, 2005; 41: 1061)
[4] Bi Z Y, Yang J, Niu J, Zhang J X.  Acta Metall Sin, 2013; 49: 576
(毕宗岳, 杨军, 牛靖, 张建勋. 金属学报, 2013; 49: 576)
[5] Firrao D, Matteis P, Spena P R, Gerosa R.  Mater Sci Eng, 2013; A559: 371
[6] Seshu Kumar A, Ravi Kumar B, Datta G L, Ranganath V R.  Mater Sci Eng, 2010; A527: 954
[7] Ren Z J, Ru C Q.  Eng Fract Mech, 2013; 99: 214
[8] Fan Z Y.  Mater Sci Eng, 1995; A191: 73
[9] Lai G Y, Wood W E, Clark R A, Zackay V F, Parker E R.  Metall Mater Trans, 1974; 5B: 1663
[10] Shi Y W, Han Z X.  J Mater Process Technol, 2008; 207: 30
[11] Kim S, Lee S, Lee B S.  Mater Sci Eng, 2003; A359: 198
[12] Youngblood J L, Raghavan M.  Metall Mater Trans, 1977; 8A: 1439
[13] Cao W D, Lu X P.  Metall Mater Trans, 1987; 18A: 1569
[14] Ma Y, Pan T, Jiang B, Cui Y H, Su H, Peng Y.Acta Metall Sin, 2011; 47: 978
(马跃, 潘涛, 江波, 崔银会, 苏航, 彭云. 金属学报, 2011; 47: 978)
[15] Wang X N, Di H S, Du L X.  Acta Metall Sin, 2012; 48: 621
(王晓南, 邸洪双, 杜林秀. 金属学报, 2012; 48: 621)
[16] Wang X N, Du L X, Di H S, Xie H, Gu D H.  Steel Res Int, 2011; 82: 1417
[17] Zhong Y, Xiao F R, Zhang J W, Shan Y Y, Wang W, Yang K.Aata Mater, 2006; 54: 435
[18] Mills W J.  J Test Eval, 1981; 9(1): 56
[19] Landes J D.  Fatigue Fract Eng Mater Struct, 1995; 18: 1289
[20] Sakamoto H, Toyama K, Hirakawa K.  Mater Sci Eng, 2000; A285: 288
[21] Fang H S, Liu D Y, Xu P G, Bai B Z, Yang Z G.  Mater Mech Eng, 2001; 25: 1
(方鸿生, 刘东雨, 徐平光, 白秉哲, 杨志刚. 机械工程材料, 2001; 25: 1)
[22] Griffith A A.  Philos Trans R Soc, 1920; 221A: 163
[23] Lee K H, Kim M C, Yang W J, Lee B S.  Mater Sci Eng, 2013; A565: 158
[24] Qian C F, Jiang Z J, Chen P, Duan C H, Cui W Y.  Acta Metall Sin, 2004; 40: 159
(钱才富, 姜忠军, 陈平, 段成红, 崔文勇. 金属学报, 2004; 40: 159)
[25] Xu J Q.  Strength of Materials. Shanghai: Shanghai Jiao Tong University Press, 2009: 59
(许金泉. 材料强度学. 上海: 上海交通大学出版社, 2009: 59)
[26] Hwang B, Kim C G, Lee T.  Metall Mater Trans, 2010; 41A: 85
[27] Byun J S, Shim J H, Cho Y W, Lee D N.  Acta Mater, 2003; 51: 1593
[28] Yong Q L.  Second Phases in Structural Steels. Beijing: Metallurgical Industry Press, 2006: 145
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 145)
[29] Deardo A J. In: Bordignon P J P, Carneiro T, Duncombe J eds.,The Fundamental Physical Metallurgy of Niobium in Steels. Warrendale: TMS, 2003: 427
[30] Wang X N, Du L X, Zhang H L, Di H S.  J Iron Steel Res, 2011; 23(5): 45

(王晓南, 杜林秀, 张海仑, 邸洪双. 钢铁研究学报, 2011; 23(5): 45)

[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[14] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[15] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.