Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1508-1520    DOI: 10.1016/j.jmst.2013.07.001
  论文 本期目录 | 过刊浏览 |
单晶高温合金螺旋选晶过程的数值模拟与实验研究:I.引晶段
张航1),许庆彦1),孙长波2), 戚翔1),唐宁1),柳百成1)
1) 清华大学材料学院先进成形制造教育部重点实验室, 北京 100084
2) 沈阳黎明航空发动机(集团)有限责任公司, 沈阳 110043
SIMULATION AND EXPERIMENTAL STUDIES ON GRAIN SELECTION BEHAVIOR OF SINGLE CRYSTAL SUPERALLOY :I. Starter Block
ZHANG Hang1), XU Qingyan1), SUN Changbo2), QI Xiang1),TANG Ning1), LIU Baicheng 1)
1) Key Laboratory for Advanced Materials Processing Technology, Ministry of Education,School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2) Shenyang Liming Aero—Engine Group Corporation Ltd., Shenyang 110043
引用本文:

张航,许庆彦,孙长波, 戚翔,唐宁,柳百成. 单晶高温合金螺旋选晶过程的数值模拟与实验研究:I.引晶段[J]. 金属学报, 2013, 49(12): 1508-1520.
ZHANG Hang, XU Qingyan, SUN Changbo, QI Xiang, TANG Ning, LIU Baicheng. SIMULATION AND EXPERIMENTAL STUDIES ON GRAIN SELECTION BEHAVIOR OF SINGLE CRYSTAL SUPERALLOY :I. Starter Block[J]. Acta Metall Sin, 2013, 49(12): 1508-1520.

全文: PDF(7938 KB)  
摘要: 

从实验及模拟角度对比研究了引晶段的晶粒密度和取向随晶粒生长高度(研究位置距试样底面的高度)的变化规律,并给出了引晶段参数的设计准则. 采用EBSD晶体取向成像技术获得了引晶段截面的晶粒形貌和取向极图;采用CA—FD方法, 针对单晶定向凝固过程进行数理建模与仿真,实现了凝固过程的三维宏观温度场与微观组织生长的模拟计算.从宏、微观角度解释了定向凝固过程的晶粒竞争演化行为, 为引晶段设计提供理论支持.

关键词 螺旋选晶器引晶段数值模拟晶粒取向晶粒密度    
Abstract

The rapid development of advanced aero—engine and industry gas turbine requires high performance of single crystal (SX) blade. Spiral selector is very important to produce SX blade, which includes starter block and spiral part. In this research, grain density changing and orientation deviating as the height of grain growth (the distance between section studied and the undersurface of the sample) increasing were studied by the experiment and simulation, and the designing rules for the starter block were given out. EBSD orientation mapping technology was used to get grains' morphology and orientation. Mathematical and physical models were built for the directional solidification process. Adopting CA—FD method, the 3D macro temperature field of solidification process was calculated as well as grain growth. The properties of grains competitive growth and evolution process during directional solidification in starter block were analyzed based on macro and micro modeling results, and rules for grains competitive growth was explained, which provided theoretical supports for designing starter block.

Key wordsspiral grain selector    starter block    numerical simulation    grain orientation    grain density
收稿日期: 2013-04-25     
基金资助:

国家重点基础研究发展计划项目2011CB706801, 国家自然科学基金项目51171089,以及国家科技重大专项项目2011ZX04014—052

作者简介: 张航, 男, 1985年生, 博士生

[1] Reed R C.  The Superalloys Fundamentals and Applications. UK: Cambridge University Press, 2006: 121

[2] Shi C X, Zhong Z Y.  Acta Metall Sin, 2010; 46: 1281
(师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)
[3] Fu H Z, Guo J J, Liu L, Li J S.  Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 525
(傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 525)
[4] Li J R, Xiong J C, Tang D Z.  Advanced High Temperature Structural Materials and Technology. Beijing: National Defense Industry Press, 2012: 100
(李嘉荣, 熊继春, 唐定中. 先进材料高温结构材料与技术. 北京: 国防工业出版社, 2012: 100)
[5] Gandin C A, Rappaz M.Acta Metall Mater, 1994; 42: 2233
[6] Rappaz M, Gandin C A.Acta Metall Mater, 1993; 41: 345
[7] Yang X L, Lee P D, D'Souza N.  JOM, 2005; 57(5): 40
[8] Gandin C A, Rappaz M.Acta Mater, 1997; 45: 2187
[9] Jin H, Li J, Pan D.Acta Metall Sin (Engl Lett), 2009; 22: 429
[10] Pan D, Xu Q Y, Liu B C.  Sci China (Engl Lett), 2011; 54G: 851
[11] Zhang H, Xu Q Y, Tang N, Pan D, Liu B C.  Sci China (Engl Lett), 2011; 54E: 3191
[12] Liu W W.  Rare Met, 2011; 30: 396
[13] Yang X L, Ness D, Lee P D, D'Souza N.  Mater Sci Eng, 2005; A413: 571
[14] D'Souza N, Ardakani M G, McLean M, Shollock B A.  Metall Mater Trans, 2000; 31A: 2877
[15] Carter P, Cox D C, Gandin C A, Reed R C.  Mater Sci Eng, 2000; A280: 233
[16] Epishin A I, Nolze G.  Cryst Rep, 2006; 51: 710
[17] Pan D, Xu Q Y, Liu B C, Li J R, Yuan H L, Jin H P.  JOM, 2010; 62(5): 30
[18] Pan D.  PhD Dissertation, Tsinghua University, Beijing, 2010
(潘冬. 清华大学博士学位论文, 北京, 2010)
[19] Seo S M, Kim I S, Lee J H, Jo C Y, Miyahara H, Ogi K.  Met Mater Int, 2009; 15: 391
[20] Zhou Y Z, Volek A, Green N R.  Acta Mater, 2008; 56: 2631
[21] Zhou Y Z, Jin T, Sun X F.  Acta Metall Sin, 2010; 11: 1327
(周亦胄, 金涛, 孙晓峰. 金属学报, 2010; 46: 1327)
[22] Walton D, Chalmers B.  Trans Am Inst Min Metall Eng, 1959; 215: 447
[23] Jiang L, Li S, Han Y.  Proc Eng, 2012; 27: 1135
[24] Meng X, Lu Q, Li J, Jin T, Sun X, Zhang J, Chen Z, Wang Y, Hu Z.J Mater Sci Technol, 2012; 28: 214
[25] Liu Z Y, Lin M, Yu D, Zhou X W, Gu Y X, Fu H Z.  Metall Mater Trans A, DOI:10.1007/S11661—013—1840—6
[26] Yu J.  PhD Dissertation, Tsinghua University, Beijing, 2007
(于靖. 清华大学博士学位论文, 北京, 2007)
[27] Liang Z J.  PhD Dissertation, Tsinghua University, Beijing, 2003
(梁作俭. 清华大学博士学位论文, 北京, 2003)
[28] Li J R, Zhong Z G, Tang D Z, Liu S Z, Wei P, Wei P Y, Wu Z T, Huang D.In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Oison S, Schirra J J,eds.,  Superalloys 2000, Warrendale, PA: TMS, 2000: 777
[29] Editorial Committee.  Practical Handbook of Engineering Materials.
2nd Ed., Beijing: China Standards Press, 2002: 771
(丛书编委会. 工程材料实用手册. 第2版, 北京: 中国标准出版社, 2002: 771)
[30] Jin H P, Li J R, Liu S Z. In: Chandra T, Wanderka N, Reimers W, Ionescu M, eds.,6th Int Conf on Processing and Manufacturing of Advanced Materials,Berlin, Germany: Trans Tech Publications Ltd., 2010: 2251
[31] Pan D, Xu Q Y, Yu J, Liu B C, Li J R, Yuan H L, Jin H P.Int J Cast Metal Res, 2008; 21: 308
[32] Liu S Z, Li J R, Tang D Z, Zhong Z G.  J Mater Eng, 1999; (7): 40
(刘世忠, 李嘉荣, 唐定忠, 钟振纲. 材料工程, 1999; (7): 40)
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[8] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[9] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[10] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[11] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[12] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[14] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[15] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.