Please wait a minute...
金属学报  2013, Vol. 49 Issue (2): 187-198    DOI: 10.3724/SP.J.1037.2012.00465
  论文 本期目录 | 过刊浏览 |
Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究
韦昭召,马骁,张新平
华南理工大学材料科学与工程学院, 广州 510640
STUDY ON THE DISLOCATION STRUCTURE OF INTERPHASE INTERFACE AND MARTENSITE TRANSFORMATION CRYSTALLOGRAPHY IN Ni2 MnGa ALLOY
WEI Zhaozhao, MA Xiao, ZHANG Xinping
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
引用本文:

韦昭召,马骁,张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49(2): 187-198.
WEI Zhaozhao, MA Xiao, ZHANG Xinping. STUDY ON THE DISLOCATION STRUCTURE OF INTERPHASE INTERFACE AND MARTENSITE TRANSFORMATION CRYSTALLOGRAPHY IN Ni2 MnGa ALLOY[J]. Acta Metall Sin, 2013, 49(2): 187-198.

全文: PDF(4476 KB)  
摘要: 

运用马氏体相变拓扑模型研究了Ni2MnGa合金中相界面位错结构及马氏体相变晶体学, 并将计算结果与马氏体相变唯象理论进行了对比. 当选择相变位错b+1/+1D1和晶格不变应变位错bL=0.186[111]M作为吸收共格应变的界面缺陷, 且扭转角ω=3.2°时, 惯习面HP(2)的晶面指数为{0.691-0.117 0.713}p, 与台阶台面的倾角为42.000°; 两相的位向关系为:(111)p偏离(101)M 0.317°, [110]p偏离[111]M约3.200°. 上述计算结果与基于马氏体相变唯象理论的估算值非常接近,表明Burgers矢量长度较小的界面缺陷在相变过程中更容易被激活, 由此计算所获得的理论结果也更符合马氏体相变唯象理论基于不变平面的假设. 另外, 还用马氏体相变拓扑模型计算并获得了马氏体相变唯象理论所无法获得的相界面缺陷网结构参数, 说明这种模型比唯象理论更普适、更优越.

关键词 马氏体相变拓扑模型相变晶体学相界面结构相变位错    
Abstract

Ferromagnetic shape memory alloys (FSMAs), such as Ni2MnGa alloy, promise to be the keymaterials in manufacturing new type of actuator and sensor because of their high responsive speed and large strainoutput. In order to find the best functions of FSMAs, the understanding of their martensite transformationcrystallography is of enormous necessity and importance. In the present study, the topological model of martensite transformation was applied to the analysis of the interphase interfacial defect structure and crystallography ofmartensite transformation, such as the habit plane index and orientation relationship, in a Ni2MnGa alloy. The results obtained in this work were compared with the prediction from the phenomenological theory of martensite crystallography (PTMC). When the transformation dislocation b+1/+1D1 with smaller Burgers vectors and the lattice invariant deformation (LID) dislocation bL=0.186[111]M are activated to accommodate the coherency strain with a twist angle ω=3.2°, the habit plane is determined to be {0.691-0.117 0.713}p represented in the parent crystal frame, having an inclination angle Ψp=42.000°with the terrace plane (111)p. Furthermore, the orientation relationship between the parent and martensite phases is found to be, namely, {0.69-0.117 0.713}p 0.317° away from (101)M and [110]p about 3.200° away from [111]M, which are close to the calculated values based on the phenomenological theory of martensite crystallography. It is evident that the transformation dislocation with smaller Burgers vectors can be activated more easily during a martensite transformation. Additionally, for a range of twist ω, the alternative combination of disconnection and LID might be introduced in the topological model to obtain multiple predictions of martensite transformation crystallography, which could provide an explanation for the diversity and complexity of martensite transformation crystallography resulting from the different measured positions or external fields. Moreover, the parameters of the interfacial defect network, i.e., the line direction and the spacing of the interfacial defects, were also determined according to the topological model of martensite transformation, while the PTMC provides limited information of the microstructure of the martensite interface. It has been shown that the topological model of martensite transformation exhibits greater flexibility and advantage compared to the PTMC.

Key wordsmartensite transformation    topological model    transformation crystallography    interphase interface structure    transformation dislocation
收稿日期: 2012-08-04     
基金资助:

国家自然科学基金项目50801029和50871039, 广东省自然科学基金项目10151064101000017及中央高校基本科研业务费专项资金

作者简介: 韦昭召, 男, 1985年生, 博士生

[1] Ullakko K, Huang J K, Kanter C, Kokorin V V, O’Handley R C. Appl Phys Lett, 1996; 69: 1966


[2] Dunand D C, Mullner P. Adv Mater, 2011; 23: 216

[3] Ma Y Q, Jiang C B, Li Y, Xu H B, Wang C P, Liu X J. Acta Mater, 2007; 55: 1533

[4] Zhu F Q, Yang F Y, Chien C L, Ritchie L, Xiao G, Wu G H. J Magn Magn Mater, 2005; 288: 79

[5] Sasso C P, Zheng P Q, Basso V, Mullner P, Dunand D C. Intermetallics, 2011; 19: 952

[6] Chernenko V, Kohl M, Doyle S, Mullner P, Ohtsuka M. Scr Mater, 2006; 54: 1287

[7] Long Y, Zhang Z Y, Wen D, Wu G H, Ye R C, Chang Y Q, Wan F R. J Appl Phys, 2005; 98: 046102

[8] Zhao R B. PhD Thesis, Shanghai Jiao Tong University, 2003.

(赵容斌. 上海交通大学博士论文, 2003)

[9] Wayman C M. Introduction to the Crystallography of Martensite Transformation. New York: MacMillan, 1964

[10] Cong D Y, Zhang Y D, Wang Y D, Humbert M, Zhao X, Watanabe T, Zuo L, Esling C. Acta Mater, 2007; 55: 4731

[11] Cong D Y, Zetterstrom P, Wang Y D, Delaplane R, Peng R L, Zhao X, Zuo L. Appl Phys Lett, 2005; 87: 111906

[12] Rigsbee J M, Aaronson H I. Acta Metall, 1979; 27: 351

[13] Qiu D, Zhang W Z. Acta Metall Sin, 2006; 42: 341

(邱冬, 张文征. 金属学报, 2006; 42: 341)

[14] Zhang W Z, Weatherly G C. Prog Mater Sci, 2005; 50: 181

[15] Weatherly G C, Zhang W Z. Metall Mater Trans, 1994; 25A: 1865

[16] Moritani T, Miyajima N, Furuhara T, Maki T. Scr Mater, 2002; 47: 193

[17] Pond R C, Celotto S, Hirth J P. Acta Mater, 2003; 54: 5385

[18] Pond R C, Ma X, Chai Y W, Hirth J P. Topological Modelling of Martensitic Transformations.

In: Nabarro F R N, Hirth J P, eds., Dislocation in Solids, Amsterdam: Elsevier, 2007: 225

[19] Ma X, Pond R C. J Mater Sci, 2011; 46: 4236

[20] Ma X, Pond R C. Mater Sci Eng, 2008; A481-482: 404

[21] Chiao Y H, Chen I W. Acta Metall et Mater, 1990; 38: 1163

[22] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1998: 4

[23] Ogawa K, Kajiwara S. Philos Mag, 2004; 84: 2919

[24] Olson G B, Cohen M. Acta Metall, 1979; 27: 1907

[25] Bilby B A, Bullough R, Smith E. Proc Roy Soc, 1955; 231: 263

[26] Frank F C. The Resultant Content of Dislocation in an Arbitrary Intercrystalline Boundary,

In: Symposium on the Plastic Deformation of Crystalline Solid, Washington, D.C: U.S. Govt. Print. Off, 1950: 150

[27] Pond R C, Ma X, Hirth J P. Mater Sci Eng, 2006; A438-440: 109

[28] Zhang X M, Li D F, Xing Z S, Gautier E, Zhang J S, Simon A. Acta Metall et Mater, 1993; 41: 1693

 
[1] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[3] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[4] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[5] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[6] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[7] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[8] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[9] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[10] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
[11] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[12] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[13] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[14] 王学,胡磊,陈东旭,孙松涛,李立全. 马氏体相变对9%Cr热强钢管道多道焊接头残余应力演化的影响[J]. 金属学报, 2017, 53(7): 888-896.
[15] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.