Please wait a minute...
金属学报  2013, Vol. 49 Issue (2): 199-206    DOI: 10.3724/SP.J.1037.2012.00482
  论文 本期目录 | 过刊浏览 |
TiNi形状记忆合金激光焊接焊缝金属相变温度的控制
杨成功1),单际国1, 2),任家烈1)
1) 清华大学机械工程系, 北京 100084
2) 清华大学先进成形制造教育部重点实验室, 北京 100084
PHASE TRANSFORMATION TEMPERATURE CONTROL OF WELD METAL OF LASER WELDED TiNi SHAPE MEMORY ALLOY JOINT
YANG Chenggong1), SHAN Jiguo1,2), REN Jialie1)
1) Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2) Key Laboratory for Advanced Materials Processing Technology, Ministry of Education,Tsinghua University, Beijing 100084
引用本文:

杨成功,单际国,任家烈. TiNi形状记忆合金激光焊接焊缝金属相变温度的控制[J]. 金属学报, 2013, 49(2): 199-206.
YANG Chenggong, SHAN Jiguo, REN Jialie. PHASE TRANSFORMATION TEMPERATURE CONTROL OF WELD METAL OF LASER WELDED TiNi SHAPE MEMORY ALLOY JOINT[J]. Acta Metall Sin, 2013, 49(2): 199-206.

全文: PDF(4255 KB)  
摘要: 

采用镀Ni后焊接以改变焊缝金属的Ni含量, 再经时效处理的“复合法”工艺对焊缝金属的相变温度进行控制. 研究了镀层厚度和时效时间对焊缝金属相变温度的影响规律, 利用DSC, EDS, SEM, OM和XRD分析了焊缝金属的相变温度、化学成分和组织形貌, 并从析出相、晶粒择优取向及晶格畸变对马氏体弹性能和相变阻力的影响几方面分析了“复合法”控制相变温度的机理. 结果表明, 增加焊缝金属Ni含量仅能增加马氏体的弹性能, 导致相变温度降低; 而时效处理在增加相变阻力的同时也降低了马氏体的弹性能, 导致相变温度提高;控制“复合法”工艺参数则可以将焊缝金属中马氏体的弹性能和相变阻力控制在合理的范围内, 使焊缝金属的相变温度AsAf与母材相当.

关键词 TiNi合金激光焊接焊缝金属相变温度镀Ni+时效处理    
Abstract

The phase transformation temperature (PTT) of laser welded TiNi alloy joint is mainly determined by the PTT of its weld metal. A two-step approach is developed to control the PTT of weld metal, including Ni-plating and aging treatment. The Ni-plating increases the Ni content of weld metal, and the aging treatment improves the formation of precipitation phase. The effect of plating thickness and aging time on the PTT of weld metal is studied. The chemical composition, microstructure, crystal structure and PTT are analyzed by DSC, EDS, OM, SEM and XRD, respectively. The PTT controlling mechanism of the developed two-step approach is understood by investigating the effect of precipitation phase, grain preferred orientation, and lattice distortion on the elastic energy resilience of martensite and the resistance of phase transition. The increasing of Ni content in weld metal by Ni-plating can just rise up the elastic energy resilience of martensite, which causes the drop of PTT. The aging treatment not only increases the resistance of phase transition, but also reduces the elastic energy resilience of martensite. The compound effect increases the PTT of weld metal. By adjusting the plating thickness and the aging time of the two-step approach, both the elastic energy resilience of martensite and the resistance of phase transition can be controlled within a reasonable range. These measures keep the austenite start temperature (As) and finish temperature (Af) of weld metal as the similar as that of base metal, thus the PTT of TiNi alloy joint is well controlled.

Key wordsTiNi alloy    laser welding    weld metal    phase transformation temperature    Ni plating+ aging treatment
收稿日期: 2012-08-13     
作者简介: 杨成功, 男, 1977年生, 博士生

[1] Ren J L, Wu A P. Joining of Advanced Materials. Beijing: China Machine Press, 2000: 335


(任家烈, 吴爱萍. 先进材料的连接. 北京: 机械工业出版社, 2000: 335)

[2] Yang C G, Shan J G, Wen P, Ren J L. Acta Metall Sin, 2011; 47: 1277

(杨成功, 单际国, 温鹏, 任家烈. 金属学报, 2011; 47: 1277)

[3] Yang C G, Shan J G, Ren J L. Acta Metall Sin, 2012; 48: 513

(杨成功, 单际国, 任家烈. 金属学报, 2012; 48: 513)

[4] Falvo A, Furgiuele F M, Maletta C. Mater Sci Eng, 2005; A412: 235

[5] Hsu Y T, Wang Y R, Chen C. Metall Mater Trans, 2001; 32A: 569

[6] Falvo A, Furgiuele F M, Maletta C. Mater Sci Eng, 2008; A481--482: 647

[7] Gugel H, Schuermann A, Theisen W. Mater Sci Eng, 2008; A481--482: 668

[8] Wang W, Chen G, Chen L, Zhao X K, Huang J H. Appl Laser, 2008; 28: 199

(王蔚, 陈庚, 陈俐, 赵兴科, 黄继华. 应用激光. 2008; 28: 199)

[9] Tang W, Sundman B, Sandstrom R, Qiu C. Acta Mater, 1999; 47: 3457

[10] Frenzel J, George E P, Dlouhy A, Somsen Ch, Wagner M F X, Eggeler G. Acta Mater, 2010; 58: 3444

[11] Khalil--Allafi J, Dlouhy A, Eggeler G. Acta Mater, 2002; 50: 4255

[12] Fan G, Chen W, Yang S, Zhu J H, Ren X B, Otsuka K. Acta Mater, 2004; 52: 4351

[13] Krishna V B, Bose S, Bandyopadhyay A. Metall Mater Trans, 2007; 38A: 1097

[14] Zhao L C, Cai W, Zheng Y F. Shape Memory Effect and Superelasticity in Alloys.Beijing: National Defense Industry Press, 2002: 5

(赵连成, 蔡伟, 郑玉峰. 合金的形状记忆效应和超弹性. 北京: 国防工业出版社, 2002: 5)

[15] Zheng Y F, Zhao L C. Biomedical NiTi Alloys. Beijing: Science Press, 2004: 10

(郑玉峰, 赵连城. 生物医用镍钛合金. 北京: 科学出版社, 2004: 10)

[16] Xu Z Y. Shape Memory Materials. Shanghai: Shanghai Jiao Tong University Press, 2002: 18

(徐祖耀. 形状记忆材料. 上海: 上海交通大学出版社, 2002: 18)

[17] Funakubo H, translate by Qian D F. Shape Memory Alloy. Beijing: China Machine Press, 1984: 85

(Funakubo H, 千东范译. 形状记忆合金. 北京: 机械工业出版社, 1984: 85)

[18] He Z Y. Acta Metall Sin, 2007; 43: 353

(贺志荣. 金属学报, 2007; 43: 353)

[19] Wang Q, He Z R, Liu M Q, Yang J, Liu Y. Rare Met Mater Eng, 2011; 40: 395

[20] Xu Z Y. Principle of Phase Transformation, Beijing: Science Press, 1988: 21

(徐祖耀. 相变原理. 北京: 科学出版社, 1988: 21)

[21] Xu Z Y. Martensite Transformation and Martensite. Beijing: Science Press, 1980: 309

(徐祖耀. 马氏体相变与马氏体. 北京: 科学出版社, 1980: 309)

[22] Yang D Z, Zhang L S, Wang F T. Shape Memory Alloy. Dalian: Press of Dalian Institute of Technology, 1988: 1

(杨大智, 张连生, 王凤亭. 形状记忆合金. 大连: 大连工学院出版社, 1988: 1)

[23] Otsuka K, Ren X. Prog Mater Sci, 2005; 50: 511

[24] Prokoshkin S D, Korotitskiy A V, Brailovski V, Turenne S, Khmelevskaya I Yu, Trubitsyna I B. Acta Mater, 2004; 52: 4479

[25] Huang Y S, Lin G M, Lai Q L. Chin J Nonferrous Met, 1993; 3: 57

 (黄元士, 林光明, 赖奇略. 中国有色金属学报, 1993; 3: 57)
[1] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[2] 牛建钢, 肖伟. TiNi合金B2奥氏体中Ti位Ni诱导的晶格失稳[J]. 金属学报, 2019, 55(2): 267-273.
[3] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[4] 宋峰雨,李艳梅,王平,朱伏先. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响*[J]. 金属学报, 2016, 52(7): 890-896.
[5] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[6] 李坤,单际国,王春旭,田志凌. T250马氏体时效钢激光焊接-时效处理接头的强韧性*[J]. 金属学报, 2015, 51(8): 904-912.
[7] 莫文林, 张旭, 陆善平, 李殿中, 李依依. Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响*[J]. 金属学报, 2015, 51(2): 230-238.
[8] 李玉斌, 王巍, 何建军, 张志强, 张彤燕. 亚共析U-Nb合金激光焊接接头的微观结构及力学性能*[J]. 金属学报, 2014, 50(3): 379-386.
[9] 周惦武,彭艳,徐少华,刘金水. 添加Sn粉激光焊接钢/铝合金异种金属的显微组织与性能[J]. 金属学报, 2013, 49(8): 959-968.
[10] 李俊杰,Godfrey Andrew,刘伟. 奥氏体化与冷却速率对过共析钢组织的影响[J]. 金属学报, 2013, 49(5): 583-592.
[11] 董丹阳, 刘杨, 王磊, 杨玉玲, 李金凤, 金梦梦. 应变速率对DP780钢激光焊接接头动态变形行为的影响[J]. 金属学报, 2013, 49(12): 1493-1500.
[12] 杨成功,单际国,任家烈. TiNi合金激光焊接接头形状恢复温度的研究[J]. 金属学报, 2012, 48(5): 513-518.
[13] 彭云 王爱华 肖红军 田志凌. Cu对690 MPa级HSLA钢熔敷金属组织形成和细化的作用[J]. 金属学报, 2012, 48(11): 1281-1289.
[14] 温鹏 荻崎贤二 山本元道. 激光焊接过程中残留液体金属的高速高倍在线观察[J]. 金属学报, 2011, 47(3): 305-310.
[15] 杨成功 单际国 温鹏 任家烈. 激光焊接参数对TiNi合金相变温度的影响[J]. 金属学报, 2011, 47(10): 1277-1284.