Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1459-1466    DOI: 10.3724/SP.J.1037.2012.00263
  论文 本期目录 | 过刊浏览 |
强变形对Cu-Cr合金组织性能的影响
宋鲁男1,刘嘉斌1,2,黄六一1.3,曾跃武1,孟亮1
1. 浙江大学材料系, 杭州 310027
2. 浙江大学力学系, 杭州 310027
3. 浙江省特种设备检验研究院, 杭州 310015
EFFECT OF HEAVILY DRAWING ON THE MICROSTRUCTURE AND PROPERTIES OF Cu–Cr ALLOYS
SONG Lunan 1, LIU Jiabin 1,2, HUANG Liuyi 1,3, ZENG Yuewu 1, MENG Liang 1
1) Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
2) Department of Mechanics Science and Engineering, Zhejiang University, Hangzhou 310027
3) Zhejiang Special Equipment Inspection and Research Institute, Hangzhou 310015
引用本文:

宋鲁男 刘嘉斌 黄六一 曾跃武 孟亮. 强变形对Cu-Cr合金组织性能的影响[J]. 金属学报, 2012, 48(12): 1459-1466.
SONG Lunan LIU Jiabin HUANG Liuyi ZENG Yuewu MENG Liang. EFFECT OF HEAVILY DRAWING ON THE MICROSTRUCTURE AND PROPERTIES OF Cu–Cr ALLOYS[J]. Acta Metall Sin, 2012, 48(12): 1459-1466.

全文: PDF(4207 KB)  
摘要: 

采用冷拉拔方法制备了高强高导Cu-Cr合金导线, 考察了合金界面结构随拉拔变形量的演变, 探讨了界面结构变化与合金性能的关系.结果表明, 随变形量增大, Cu和Cr相均被逐渐拉长成纤维状, 且两相的晶面之间逐渐趋于(111)Cu//(110)Cr, Cu/Cr界面由非共格关系演变为共格关系, 同时, 通过Cu/Cr界面的互扩散增强. 界面密度的增加是导致电阻率随变形量增加持续增大的主要因素. 界面共格化是造成合金强度增大并趋于恒定的原因.

关键词 Cu--Cr合金 强度 电导率 相界面    
Abstract

Cu–Cr alloy is a kind of promising materials used as conductor due to its good strength and high conductivity. Heavy cold deformation could increase the strength effectively. Most of Cu and Cr phase are elongated into filaments during cold drawing. There exits plenty of Cu/Cr interface and the structure of Cu/Cr interface is thought to play an essential role in the properties of the Cu–Cr alloy. In this work, Cu–Cr wires were prepared by cold drawing method. The evolution of the microstructure and the structural change of phase interface during cold drawing have been investigated and the relationship between properties and microstructure also established. The microstructure consists of Cu matrix and Cr particles before cold drawing. As the drawing strain increases, both of Cu and Cr phases evolve into filamentary structure. Some residual Cr particles are still found in the alloy even at high drawing ratio. There is a relationship of (111)Cu//(110)Cr between Cu fibers and Cr fibers at high strain levels. The Cu/Cr interface is non–coherent before cold drawing and gradually evolves into the coherent interface at high drawing strains. The inter–solution ability of Cu and Cr elements across the Cu/Cr interface is enhanced with the increase in the drawing strain. The coherent Cu/Cr interface and the increasing of interface density should be responsible for the strength rising to an almost constant value and the increase in electrical resistivity of Cu–Cr alloys at high strain levels.

Key wordsCu–Cr alloy    strength    conductivity    phase interface
收稿日期: 2012-05-10     
ZTFLH:  TG146.1  
基金资助:

国家自然科学基金项目11202183和50671092, 国家科技支撑计划项目2009BAG12A09和浙江省自然科学基金项目Y4100193资助

作者简介: 宋鲁男, 男, 1988年生, 硕士生

[1] Deng J Q, Zhang X Q, Shang S Z, Liu F, Zhao Z X, Ye Y F. Mater Des, 2009; 30: 4444

[2] Wang X F, Zhao J Z, He J. Mater Sci Eng, 2007; A460: 69

[3] Liu P, Kang B X, Cao X G, Huang J L, Gu H C. Acta Metall Sin, 1999; 35: 561

(刘 平, 康布熙, 曹兴国, 黄金亮, 顾海澄. 金属学报, 1999; 35: 561)

[4] Chbihi A, Sauvage X, Blavette D. Acta Mater, 2012; 60: 4575

[5] West E G. Copper and its Alloys. Chichester: Ellis Horwood, 1982: 1

[6] Fujii T, Nakazawa H, Kato M, Dahmen U. Acta Mater,2000; 48: 1033

[7] Li Y, Chen X H, Liu P, Gao L H, Tian B H. Trans Mater Heat Treat, 2011; 32(2): 86

(李 炎, 陈小红, 刘 平, 高林华, 田保红. 材料热处理学报, 2011; 32(2): 86)

[8] Jin Y, Adachi K, Takeuchi T, Suzuki H G. J Mater Sci, 1998; 33: 1333

[9] Jin Y, Adachi K, Takeuchi T, Suzuki H G. Mater Sci Eng, 1999; A212: 149

[10] Liu J L, Wang E D, Liu Z Y, Hu L X, Fang W B. Mater Sci Eng, 2004; A382: 301

[11] Liu J B, Zhang L, Yao D W, Meng L. Acta Mater, 2011; 59: 1191

[12] Raabe D, Ohsaki S, Hono K. Acta Mater, 2009; 57: 5254

[13] Zhang D L, Mihara K, Takakura E, Suzuki H G. Mater Sci Eng, 1999; A296: 99

[14] Liu Y, Shao S, Liu K M, Yang X J, Lu D P. Mater Sci Eng, 2012; A531: 141

[15] Jin Y, Adachi K, Takeuchi T, Suzuki H G. Metals Mater Trans, 1998; 29A: 2195

[16] Sinclair C W, Embury J D, Weatherly G C. Mater Sci Eng, 1999; A272: 90

[17] Sun S J, Sakai S, Suzuki H G. Mater Trans, 2000; 41: 613

[18] Wang Y L, Han K, Huang Y, Zhang K Y. Mater Sci Eng, 2003; A351: 214

[19] Snoeck E, Lecouturier F, Thilly L, Casanove M J, Rakoto H, Coffe G, Askenazy S, Peyrade J P, Roucou C, Pantsyrny V, Shikov A, Nikulin A. Scr Mater, 1998; 38: 1643

[20] Liu K M, Lu D P, Zhou H T, Atrens A, Chen Z B, Zou J, Zeng S M. J Alloys Compd, 2010; 500: L22

[21] Lee K L, Whitehouse A F, Russell A M, Wongpreedee K, Hong S I, Withers P J. J Mater Sci, 2003; 38: 3437

[22] Wingrove A L. J Inst Met, 1972; 100: 313

[23] Cairns J H, Clough J, Dewey M, Nutting J. J Inst Met, 1971; 99: 93

[24] Lee T C, Robertson I M, Birnbaum H K. Ultramicroscopy, 1989; 29: 212

[25] Zhang L, Meng L. Chin J Nonferrous Met, 2005; 15: 751

(张雷, 孟亮. 中国有色金属学报, 2005; 15: 751)

[26] Heringhaus F, Schneider–Muntau H J, Gottstein G. Mater Sci Eng, 2003; A347: 9

[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[3] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[6] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[7] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[8] 侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰. 突破强度-导电率制约关系:晶粒异构设计[J]. 金属学报, 2022, 58(11): 1467-1477.
[9] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[10] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[11] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[12] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[13] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[14] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[15] 崔洋, 李寿航, 应韬, 鲍华, 曾小勤. 基于第一性原理的金属导热性能研究[J]. 金属学报, 2021, 57(3): 375-384.