Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1453-1458    DOI: 10.3724/SP.J.1037.2012.00270
  论文 本期目录 | 过刊浏览 |
5456铝合金PLC效应的两种临界机制研究
符师桦,程腾,张青川,曹鹏涛,胡琦
中国科学技术大学中国科学院材料力学行为和设计重点实验室, 合肥 230027
STUDY ON TWO CRITICAL MECHANISMS OF PLC EFFECT OF 5456 Al–BASED ALLOY
FU Shihua, CHENG Teng, ZHANG Qingchuan, CAO Pengtao, HU Qi
CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230027
引用本文:

符师桦 程腾 张青川 曹鹏涛 胡琦. 5456铝合金PLC效应的两种临界机制研究[J]. 金属学报, 2012, 48(12): 1453-1458.
FU Shihua CHENG Teng ZHANG Qingchuan CAO Pengtao HU Qi. STUDY ON TWO CRITICAL MECHANISMS OF PLC EFFECT OF 5456 Al–BASED ALLOY[J]. Acta Metall Sin, 2012, 48(12): 1453-1458.

全文: PDF(1287 KB)  
摘要: 

在不同温度下对5456铝合金进行拉伸实验, 观察到低温下的正常临界行为和高温下的反常临界行为. 对比不同温度下的应力--应变曲线, 分别定义上下包络线. 临界应变之前的应力在低温时遵循下包络线, 在高温时遵循上包络线. 锯齿状应力-应变曲线在上下包络线之间振荡, 且在低温时, 锯齿方向朝上; 高温时锯齿方向朝下. 通过对应力和微观位错运动的分析讨论, 提出了分别对应于上下包络线的2种稳定塑性变形, 并给出相应的位错运动情况: 下包络线对应着位错没有被溶质原子钉扎,上包络线对应着一部分位错已经被溶质原子钉扎但未能脱钉. 正常临界行为取决于第一次钉扎, 而反常临界行为取决于第一次脱钉.

关键词 5456铝合金 Portevin-Le Chatelier (PLC) 效应 动态应变时效 位错 拉伸实验    
Abstract

The normal critical behavior at low temperature and inverse critical behavior at high temperature of 5456 Al–based alloy were observed via tension tests at different temperatures. By comparing the stress–strain curves at different temperatures, the lower and upper envelope curves were identified. Before the critical strain, the stress followed the lower envelope curve at low temperature while followed the upper envelope curve at high temperature. The subsequent serrations, which were upward at low temperature but downward at high temperature, waved between the two envelope curves. Furthermore, in relation with stress and dislocation motion, two types of dislocation motion for stable plasticity corresponding to the upper and lower envelope curves were presented, respectively. The lower envelope curve implied few dislocations were pinned by solute, while the upper envelope curve implied some dislocations were pinned by solute prior to escape. Finally, two critical mechanisms were proposed that the critical strain depended on the first pinning process in normal behavior and on the first unpinning process in inverse behavior.

Key words5456 Al–based alloy    Portevin–Le Chatelier (PLC) effect    dynamic strain aging    dislocation    tension test
收稿日期: 2012-05-14     
ZTFLH:  O34  
基金资助:

国家重点基础研究发展计划项目2011CB302105, 国家自然科学基金项目51271174, 11072233和11102201及中国博士后科学基金项目20100480684资助

作者简介: 符师桦, 男, 1985年生, 博士生

[1] Cottrell A H. Philos Mag, 1953; 44: 829

[2] Cieslar M, Fressengeas C, Karimi A, Martin J L. Scr Mater, 2003; 48: 1105

[3] Nagarjuna S, Anozie F N, Evans J T. Mater Sci Technol, 2003; 19: 1661

[4] Lu J Y, Jiang Z Y, Zhang Q C. Acta Metall Sin, 2006; 42:139

(卢俊勇, 蒋震宇, 张青川. 金属学报, 2006; 42: 139)

[5] Liu H W, Zhang Q C, Lu J Y, Xiang G F, Wu X P. Acta Metall Sin, 2006; 42: 925

(刘颢文, 张青川, 卢俊勇, 项国富, 伍小平. 金属学报, 2006; 42: 925)

[6] Sleeswyk A W. Acta Metall, 1958; 6: 598

[7] Mulford R A, Kocks U F. Acta Metall, 1979; 27: 1125

[8] McCormick P G. Acta Metall, 1988; 36: 3061

[9] Springer F, Nortmann A, Schwink C. Phys Status Solidi, 1998; 170A: 63

[10] Klose F B, Ziegenbein A, Weidenm¨uller J, Neuh¨auser H, Hahner P. Comput Mater Sci, 2003; 26: 80

[11] Balik J, Lukac P, Kubin L P. Scr Mater, 2000; 42: 465

[12] Chihab K, Fressengeas C. Mater Sci Eng, 2003; A356: 102

[13] Peng K P, Chen W Z, Qian K W. Mater Sci Eng, 2006;A419: 53

[14] Cui C Y, Gu Y F, Yuan Y, Harada H. Scr Mater, 2011;64: 502

[15] Kubin L P, Estrin Y. Acta Metall Mater, 1990; 38: 697

[16] McCormick P G. Acta Metall, 1972; 20: 351

[17] Brechet Y, Estrin Y. Acta Metall Mater, 1995; 43: 955

[18] Cai M C, Niu L S, Yu T, Shi H J, Ma X F. Mater Sci Eng,2010; A527: 5175

[19] Rodriguez P, Venkadesan S. Solid State Phenom, 1995;42–43: 257

[20] Soare M A, Curtin W A. Acta Mater, 2008; 56: 4091

[21] Flor H, Neuh¨auser H. Acta Metall, 1980; 28: 939

[22] Rizzi E, H¨ahner P. Int J Plasticity, 2004; 20: 121

[23] Hu Q, Zhang Q C, Cao P T, Fu S H. Acta Mater, 2012; 60: 1647

[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[4] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[5] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[6] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[7] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[8] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[9] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[10] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[11] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[12] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[13] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[14] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[15] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.