Please wait a minute...
金属学报  2012, Vol. 48 Issue (5): 534-540    DOI: 10.3724/SP.J.1037.2012.00105
  论文 本期目录 | 过刊浏览 |
AH32耐蚀钢显微组织对其腐蚀行为的影响
郝雪卉1,董俊华1,魏洁1,柯伟1,王长罡1,徐小连2,叶其斌2
1. 中国科学院金属研究所, 沈阳 110016
2. 鞍钢股份有限公司 技术中心, 鞍山 114009
INFLUENCE OF MICROSTRUCTURE OF AH32 CORROSION RESISTANT STEEL ON CORROSION BEHAVIOR
HAO Xuehui1, DONG Junhua1, WEI Jie1, KE Wei1, WANG Changgang1,XU Xiaolian2, YE Qibin2
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Technology Center of Angang Steel Co., Ltd., Anshan 114009
引用本文:

郝雪卉,董俊华,魏洁,柯伟,王长罡,徐小连,叶其斌. AH32耐蚀钢显微组织对其腐蚀行为的影响[J]. 金属学报, 2012, 48(5): 534-540.
, , , , , . INFLUENCE OF MICROSTRUCTURE OF AH32 CORROSION RESISTANT STEEL ON CORROSION BEHAVIOR[J]. Acta Metall Sin, 2012, 48(5): 534-540.

全文: PDF(3747 KB)  
摘要: 根据《油船货油舱耐蚀钢性能标准》规范, 通过浸泡实验测量了AH32耐蚀钢在货油舱底部模拟环境中的腐蚀过程. 采用失重测量、电化学极化与阻抗方法、扫描电镜和电子探针等手段, 分析了AH32耐蚀钢显微组织对其腐蚀行为的影响. 实验结果表明: 模拟货油舱底板腐蚀实验中, AH32耐蚀钢的轧制面因珠光体所占面积分数小而腐蚀速率较低, 其横截面则因珠光体面积分数大而造成腐蚀速度较快, 而且二者的腐蚀速度均随浸泡时间的延长而加速. 此外, 轧制面表面有均匀腐蚀和因夹杂物溶解所形成的蚀坑, 而横截面的腐蚀则沿条带状珠光体组织而有选择的进行. 样品的珠光体区域在浸泡后有碳富集, 这是造成腐蚀随浸泡时间延长而加速的原因.
关键词 AH32耐蚀钢浸泡实验显微组织腐蚀行为    
Abstract:International martime organization (IMO) has approvedand considered corrosion resistant steel as the only alternative for anti-corrosion coating since May 2010. The implementation of the standard will have a profound impact on ship building, steel, shipping and other industries. At present, Japan has a relatively mature technology, South Korea has completed the pre-development work, while China has only carried out some preliminary studies. If the technology is blocked, a large number of steel needs to be imported which would push up the cost of construction of the shipbuilding industry, and has a direct impact on the orders of shipping enterprises. The amount of steel for cargo oil tank in China is more than two million tons each year, and therefore, the localization of research and application of corrosion resistant steel for cargo oil tanks has become an urgent task. The impact of microstructure of the existing shipbuilding steel on corrosion behavior in simulated corrosion environment is studied based on the standard in this paper to develop our own corrosion resistant steel. According to the standard, immersion test was used to measure the corrosion process of AH32 corrosion resistant steel in the bottom simulated environment of cargo oil tanks. Using gravimetric measurement, electrochemical polarization and impedance methods, scanning electron microscopy and electron probe et al, the influence of microstructure of AH32 corrosion resistant steel on its corrosion behaviors was analysed. The experimental results showed that: during the test simulating the corrosion of the bottom plate of cargo oil tanks, corrosion rate of the rolling surface of AH32 corrosion resistant steel was low with small area fraction of pearlite, corrosion rate of the cross section was fast due to the big area fraction of pearlite, and both corrosion rate increased with the immersion time. In addition, there were uniform corrosion and the pits formed by dissolved inclusions in rolling surface, and corrosion of the cross-section was selected along the banded pearlite. The carbon enriched in pearlite area of the sample after immersion, which caused corrosion rate increased with the immersion time.
Key wordsAH32 corrosion resistant steel    immersion test    microstructure    corrosion behavior
收稿日期: 2012-02-27     
ZTFLH: 

TG172

 
基金资助:

国家自然科学基金资助项目51131007

作者简介: 郝雪卉, 女, 1988年生, 硕士
[1] Yang M.  Encyclopedia Environ Health, 2011; 49: 33

[2] King J.  Mar Policy, 2005; 29: 235

[3] Li P, Li J D, Zhao S L, Kong L Z, Zhai Y C.  Fire Saf J, 2005; 40: 331

[4] Chen L.  Mar Equip/Mater Market, 2009; (1): 31

    (陈力. 船舶物资与市场, 2009; (1): 31)

[5] Zhang Z G.  World Iron Steel, 2008; (6): 60

    (张作贵. 世界钢铁, 2008; (6): 60)

[6] Performance Standard for Corrosion Resistant for Cargo Oil Tanks of Oil Tankers. IMO, 2010; 53(7): 42

[7] Wen Y.  Mar Equip/Mater Market, 2008; (4): 29

    (文言. 船舶物资与市场, 2008; (4): 29)

[8] Soares C G, Garbatov Y, Zayed A, Wang G.  Corros Sci, 2008; 50: 3095

[9] Shiomi H, Kaneko M, Kashima K, Imamura H.  TSCF2007 Shipbuilder Meet. Busan, 2007: 1

[10] Sakashita S, Tatsumi A, Imamura H, Ikeda H.  Shipbuilding Technol ISSF 2007. Osaka, 2007: 1

[11] Kashima K, Tanino Y, Kubo S, Inami A, Miyuki.  Shipbuilding Technol ISSF 2007. Osaka, 2007: 5

[12] Han D, Jiang Y M, Shi C, Zhao L, Li J.  Corros Sci, 2011; 53: 3796

[13] Hou B R, Li Y T, Li Y X, Zhang J L.  Mater Sci, 2000; 23: 189

[14] Guo J, Yang S W, Shang C J, Wang Y, He X L.  Corros Sci, 2008; 51: 242

[15] Wang X T, Duan J Z, Zhang J, Hou B R.  Mater Letts, 2008; 62: 1291

[16] Melchers R E.  Corros Sci, 2004; 46: 1669

[17] Lopez D A, Perez T, Simision S N.  Mater Des, 2003; 24: 561

[18] Otero E, Pardo A, Utrilla, Saenz E, Perez F J.  Mater Charact, 1995; 35: 145

[19] Suchanek J, Kuklik V, Zdravecka E.  Wear, 2009; 267 :2092

[20] Feng G H, Yang G, Yang D J, Bai G Y, Ren Q H, Li Y.  Iron Steel, 2000; 35(3): 22

     (冯光宏, 杨钢, 杨德江, 向德渊, 任庆海, 李岩. 钢铁, 2000; 35(3): 22)

[21] Zhou G F, He X L.  Dev Appl Mater, 1999; 14(3): 1

     (周桂峰, 贺信莱. 材料开发与应用, 1999; 14(3): 1)

[22] Cao C N.  Principles of Electrochemistry of Corrosion. Beijing: Chemical Industry Press, 2008: 149

     (曹楚南. 腐蚀电化学原理. 北京: 化学工业出版社, 2008: 149)

[23] Zhang G X, Si C Y, Yu D W.  Phys Test Chem Anal part: Phys Test, 2001; 37(6): 264

     (张国星, 斯初阳, 虞敌卫. 理化检验--物理分册, 2001; 37(6): 264)

[24] Cleary H J, Greene N D.  Corros Sci, 1969; 9(1): 3

[25] Lotz U, Sydberger T.  Corrosion, 1988; 44: 800
 
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.