Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 427-434    DOI: 10.3724/SP.J.1037.2011.00646
  论文 本期目录 | 过刊浏览 |
P92钢焊接接头IV型蠕变断裂特性
王学,潘乾刚,陶永顺,章应霖,曾会强,刘洪
1. 武汉大学动力与机械学院, 武汉 430072
2. 东方电气集团东方锅炉股份有限公司, 自贡 643001
TYPE IV CREEP RUPTURE CHARACTERISTICS OF P92 STEEL WELDMENT
WANG Xue1, PAN Qiangang2, TAO Yongshun2, ZHANG Yinglin1,ZENG Huiqiang2,LIU Hong2
1. School of Power and Mechanics, Wuhan University, Wuhan 430072
2. Dongfang Electric Corporation, Dongfang Boiler Group Co Ltd.,  Zigong 643001
引用本文:

王学,潘乾刚,陶永顺,章应霖,曾会强,刘洪. P92钢焊接接头IV型蠕变断裂特性[J]. 金属学报, 2012, 48(4): 427-434.
, , , , , . TYPE IV CREEP RUPTURE CHARACTERISTICS OF P92 STEEL WELDMENT[J]. Acta Metall Sin, 2012, 48(4): 427-434.

全文: PDF(1096 KB)  
摘要: 在600-650℃, 100-240 MPa对用埋弧自动焊工艺制备的P92钢焊接接头进行高温蠕变实验, 采用OM, SEM和TEM等研究焊接接头的IV型蠕变断裂特性. 结果表明, P92钢焊接接头的IV型断裂发生在高温和低应力条件下, 存在一个临界Larson--Miller参数LMP和临界应力, 它们的值分别约为35.5和120 MPa; IV型断裂部位的变形很小, 位于靠近临界热影响区的细晶区, 即加热峰值温度在AC3附近,  该部位显微结构退化为铁素体等轴晶及蠕变过程中Laves相在晶界析出和长大是影响IV型断裂的主要因素, M23C6粗化的影响较小; 焊接接头IV型断裂是一种晶界孔洞聚集型蠕变断裂, 孔洞在粗大Laves相附近形核, 可用损伤晶界上孔洞面积分数f或孔洞面积分数a作为发生IV型断裂的微观判据, 它们在650℃时的临界值分别约为0.5%和1.2%.
关键词 超超临界机组P92钢蠕变IV型断裂显微组织孔洞    
Abstract:Creep tests at 600~650℃ with applied stresses in the range 100~240MPa and microstructural observations by means of OM, SEM, TEM were conducted on weld joints of P92 steel prepared by SAW process to investigated its characteristics of Type Ⅳ creep rupture. The results showed that Type Ⅳ failure took place at higher temperature and lower stress and tend to have a critical condition expressed by Larson-Miller parameter(L.M.P.)or stress level which values are 35.5 and 120MPa respectively. Type Ⅳ failure showed a lack of ductility and located in the fine grained HAZ(heated to just above AC3)close to intercritical HAZ, where microstructural changes are obviously different from those in the base metal, including formation of equiaxed sub-grain structure, mass precipitation and rapid growth of Laves phases on the grain boundaries during creep exposure, which lead to the Type Ⅳ failure. The size of M23C6 carbide in the AC3 FGHAZ was almost the same as that in the base metal, which has little effect on the failure. Type Ⅳ rupture is a brittle intergranular fracture due to cavity coalescence, which were nucleated at coarse precipitates of Laves phase. The void area ratio of f or AA is employed to quantify grain boundary damage and evaluate Type Ⅳ failure of P92 steel weld joints, and when their values were above 1~1.2% or 0.5%, Type Ⅳ failure would occur.
Key wordsultra-supercritical unit    P92 steel    creep    type IV cracking    microstucture    void
收稿日期: 2011-10-17     
ZTFLH: 

TG142

 
基金资助:

国家自然科学基金项目51074113和中央高校基本科研业务费专项资金项目115005资助

作者简介: 王学, 男, 1971年生, 教授, 博士
[1] Jorgen B, Sven K, Rudolph B.  Energy, 2006; 31: 1437

[2] Richardot D, Vaillant J C, Arbab A, Bendick W.  The T92/P92 steel book. 2nd Ed. Boulogne: Vallourec & Mabbesmann tubes, 2002

[3] Shen Q, Liu H G.  Electr Power Constrc, 2010; 31: 71

    (沈琦, 刘鸿国. 电力建设, 2010, 31: 71)

[4] Tu S D, Xuan F Z, Wang W Z.  Acta Metall Sin, 2009; 45: 781

 (涂善东, 轩福贞, 王卫泽. 金属学报, 2009, 45: 781)

[5] Scheller H J, Haigh L, Woitscheck A.  Der Mascginenschaden,1974; 47: 1

[6] Laha K, Chandravathi K S, Rao K B S, Mannan S L, Sastry D H. Metall MaterTrans, 2001; 32A: 115

[7] Tabuchi M, Watanabe T, Kubo K, Matsui M, Kinugawa J, Abe F. J Pressure Vessel Pip, 2001; 78: 779

[8] Kojima T, Hayashi K, Kajita Y.  ISIJ Int, 1995; 35: 1284

[9] Matsui M, Tabuchi M, Watanabe T, Kubo K.  ISIJ Int, 2001; 41: S126

[10] Li D J, Shinozaki K, Kuroki H.  Sci Technol Weld Join, 2003; 8: 296

[11] Abd El--Azim M E, Nasreldin A M, Zies G, Klenk A. Mater Sci Technol, 2005; 21: 779

[12] Watanabe T, Tabuchi M, Yamazaki M, Hongo H, Tanabe T.  J Pressure Vessel Pip, 2006; 83: 63

[13] Albert S K, Matsui M, Watanabe T, Hongo H, Kubo K.  J Pressure Vessel Pip, 2003; 80: 405

[14] Korcakova L, Hald J.  Mater Charact, 2001; 47: 111

[15] Qin G Y.  Quality Metallography. Chendu: Sichuan Publishing House of Science and Technology, 1987: 1

     (秦国友. 定量金相. 成都: 四川科学技术出版社, 1987: 1)

[16] Chen B L.  Imperfection Analysis and Countmeasures for Welding Engineering. Beijing: China Machine Press, 2006: 301

     (陈伯蠡. 焊接工程缺欠分析与对策. 北京: 机械工业出版社, 2006: 301)

[17] Zhang J S.  High Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2007: 378

     (张俊善. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 378)

[18] Robertson D G, Holdsworth S R.  ECCC Data Sheets 2005. UK: ETD Ltd., 2005: 47

[19] Maruyama K, Sawada K, Koike J.  ISIJ Int, 2001; 41: 641

[20] Komai N, Masuyama F.  ISIJ Int, 2002 ; 42: 1364

[21] Gaffard V, Gourgues-Lorenzon A F, Besson J.  Nucl Eng Des,2005; 235: 2547

[22] Hald J, Korcakova L.  ISIJ Int, 2003; 43: 420

[23] Dimmler G, Weinert P, Kozeschnik E, Cerjak H.  Mater Charact,2003; 51: 341

[24] Hattestrand M, Andren H.  Micron, 2001; 32: 789

[25] Lee J S, Armaki H G, Maruyama K, Muraki T, Asahi H.  Mater Sci Eng, 2006; A428: 270

[26] Peng Z F, Cai L S, Peng F F, Hu Y P, Chen F Y.  Acta Metall Sin,2010; 46: 429

     (彭志方, 蔡黎胜, 彭芳芳, 胡永平, 陈方玉. 金属学报, 2010, 46: 429)

[27] Li D J, Shinozaki K.  Sci Technol Weld Join, 2005; 10: 544

[28] Smith D J, Walker N S, Kimmins S T.  J Pressure Vessel Pip,2003; 80: 617
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[7] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[8] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[9] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[10] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[11] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[12] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[13] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[14] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[15] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.