Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 435-440    DOI: 10.3724/SP.J.1037.2011.00738
  论文 本期目录 | 过刊浏览 |
轧后冷却路径对中碳钢扩孔性能的影响
王斌,刘振宇,周晓光,王国栋
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
EFFECT OF COOLING PATH ON THE HOLE-EXPANSION PROPERTY OF MEDIUM CARBON STEEL
WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

王斌,刘振宇,周晓光,王国栋. 轧后冷却路径对中碳钢扩孔性能的影响[J]. 金属学报, 2012, 48(4): 435-440.
, , , . EFFECT OF COOLING PATH ON THE HOLE-EXPANSION PROPERTY OF MEDIUM CARBON STEEL[J]. Acta Metall Sin, 2012, 48(4): 435-440.

全文: PDF(809 KB)  
摘要: 利用超快速冷却技术, 通过控制轧后冷却路径, 调整不同的终轧温度和终冷温度, 研究了冷却路径对热轧后经退火处理的中碳钢组织和扩孔性能的影响. 结果表明, 通过后续退火处理可以在铁素体基体上形成弥散分布的球化渗碳体组织; 随着终轧温度和终冷温度的降低, 退火处理后的渗碳体更加细小, 且弥散程度提高. 在扩孔实验中, 当切向延伸率达到材料成形极限时, 裂纹优先在冲孔的边缘出现, 裂纹主要通过微孔集聚的方式形成; 均匀细化的铁素体和球化的渗碳体组织能够明显提高实验钢的延伸率, 有效阻止相邻微孔聚合, 从而提高材料的扩孔性能.
关键词 超快速冷却中碳钢球化渗碳化扩孔    
Abstract:In the present paper, ultra fast cooling (UFC) technology was applied in the cooling process to treat medium carbon steels after hot strip rolling, and the finish rolling temperature and UFC stop temperature are controlled as the important parameters. The effects of cooling path on the microstructure and hole-expansion property of annealing medium carbon steels were investigated. The results show that finely dispersed spherical cementite could be formed in ferrite matrix after annealing treatment. With decreasing the fininsh rolling temperature and UFC stop temperature, the spheroidized cementites after annealing were more homogeneous and dispersed finely. During hole-expansion test, cracks were observed to form usually in the edge region around the punched hole when the tangential elongation exceeded the forming limit, and cracks are mainly formed in the way of micro-voids coalescence. Fine and homogeneous microstructure comprised of ferrite and spheroidized cementite could improve the elongation of the experimental sheets, suppressing the coalescence of micro-voids, and improving the hole-expansion property.
Key wordsultra fast cooling    medium carbon steel    spheroidized cementite    hole-expansion
收稿日期: 2011-11-28     
ZTFLH: 

TG355.5

 
基金资助:

国家自然科学基金项目51004037和中央高校基本科研业务费专项资金项目N100507002资助

作者简介: 王斌, 男, 1984年生, 博士生
[1] Hu C L, Zhao Z, Yin G R, Yuan Z F, Xu X L.  Trans Nonferr Met Soc China, 2009; 19(suppl 3): s552

[2] Zhang X Q, Peng Y H, Ruan X Y, Yamazaki K.  J Mater Process Technol, 2006; 174(1--3): 74

[3] Lin H S, Lee C Y, Wu C H.  Int J Machine Tools Manuf, 2007; 47: 168

[4] Fujita T, Nakamura N, Iizuka S.  JFE Technol Rep, 2004; (4): 44

[5] Comstock R J, Jr Scherrer D K, Adamczyk R D.  J Mater Eng Perform, 2006; 15: 675

[6] Fang X, Fan Z, Ralph B.  J Mater Sci, 2003; 38: 3877

[7] Cho Y R, Chung J H, Ku H H, Kim I B.  Met Mater, 1999; 5: 571

[8] Takechi H.  Proc 5th Int Conf on HSLA Steels. China: The Chinese Society for Metals, 2005: 58

[9] Kagechika H.  ISIJ Int, 2006; 46: 939

[10] Shimizu T, Funakawa Y, Kaneko S.  JFE Technol Rep,2004; (4): 25

[11] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945

[12] Takasashi M.  Nippon Steel Technol Rep, 2003; 88: 3

[13] Liu X H, Yu G F, Jiao J M, Zhang Z P, Peng L G, Wang G D. Iron Steel, 2004; 39(8): 71

     (刘相华, 余广夫, 焦景民, 张中平, 彭良贵, 王国栋. 钢铁, 2004; 39(8): 71)

[14] Buzzichelli G, Anelli E.  ISIJ Int, 2002; 42: 1354

[15] Wang G D.  Shanghai Met, 2008; 30(2): 1

     (王国栋. 上海金属, 2008; 30(2): 1)

[16] Leeuwe Y V, Onink M, Sietsm J.  ISIJ Int, 2001; 41: 1037

[17] O'Brien J M, Hosford W F.  Metall Mater Trans,2002; 33A: 1255

[18] Hyun D I, Oak S M, Kang S S, Moon Y H.  J Mater Process Technol, 2002; 130: 9

[19] Williams D B, Carter C B.  Transmission Electron Microscopy: A Textbook for Materials Science. Beijing: Tsinghua University Press,2007: 365

     (Williams D B, Carter C B. 透射电子显微学: 材料科学教程, 北京:清华大学出版社, 2007: 365)

[20] Yong Q L.  Secondary Phases in Steels. Beijing:Metallurgical Industry Press, 2006: 32

     (雍启龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 32)

[21] Vedula K M, Heckel R W.  Metall Mater Trans, 1970; 1B:9

[22] Gang U G, Lee J C, Nam W J.  Met Mater Int, 2009; 15: 719

[23] Fargas G, Anglada M, Mateo A.  J Mater ProcessTechnol, 2009; 209: 1770
 
[1] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[2] 武慧东, 宫本吾郎, 杨志刚, 张弛, 陈浩, 古原忠. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出[J]. 金属学报, 2018, 54(3): 367-376.
[3] 王斌, 刘振宇, 冯洁, 周晓光, 王国栋. 超快速冷却条件下碳素钢中纳米渗碳体的析出行为和强化作用*[J]. 金属学报, 2014, 50(6): 652-658.
[4] 吴斯, 李秀程, 张娟, 尚成嘉. Nb对中碳钢相变和组织细化的影响*[J]. 金属学报, 2014, 50(4): 400-408.
[5] 王斌,刘振宇,周晓光,王国栋. 超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算[J]. 金属学报, 2013, 49(1): 26-34.
[6] 李龙飞, 夏杨青, 孙祖庆, 杨王玥 . 中碳钢回火马氏体热变形过程中的铁素体动态再结晶[J]. 金属学报, 2010, 46(1): 19-26.
[7] 张寒 白秉哲. Mn-Si-Cr系中碳钢在过冷奥氏体状态下变形时的显微组织演变[J]. 金属学报, 2010, 46(1): 47-51.
[8] 张继旺 鲁连涛 张卫华. 微粒子喷丸中碳钢疲劳性能分析[J]. 金属学报, 2009, 45(11): 1378-1383.
[9] 陈国安; 杨王玥; 孙祖庆; 张湘义 . 中碳钢过冷奥氏体形变过程中碳的分布与扩散[J]. 金属学报, 2007, 43(8): 785-790 .
[10] 陈国安; 杨王玥 . 中碳钢过冷奥氏体形变过程的组织演变[J]. 金属学报, 2007, 42(1): 27-34 .
[11] 惠卫军; 田鹏; 董瀚; 苏世怀; 于同仁; 翁宇庆 . 形变温度对中碳钢组织转变的影响[J]. 金属学报, 2005, 41(6): 611-616 .
[12] 董祥林; 简小刚; 毕红运; 陈金荣 . 磁场对中碳钢滑动摩擦磨损的影响[J]. 金属学报, 1999, 35(6): 577-580 .
[13] 赵廷仕. 中碳钢的低周疲劳寿命与塑性应变能[J]. 金属学报, 1993, 29(2): 45-48.
[14] 刘禹门;贺志荣. 中碳铁合金马氏体的一些特征[J]. 金属学报, 1989, 25(2): 61-64.