Please wait a minute...
金属学报  2011, Vol. 47 Issue (12): 1541-1549    DOI: 10.3724/SP.J.1037.2011.00382
  论文 本期目录 | 过刊浏览 |
Ti和Mn含量对CSP工艺Ti微合金钢析出特征与强化机理的影响
王长军1,雍岐龙1,孙新军1,毛新平2,李昭东1,雍兮1
1. 钢铁研究总院结构材料研究所, 北京 100081
2. 广州珠江钢铁有限责任公司,  广州 510730
EFFECTS OF Ti AND Mn CONTENTS ON THE PRECIPITATE CHARACTERISTICS AND STRENGTHENING MECHANISM IN Ti MICROALLOYED STEELS
PRODUCED BY CSP
WANG Changjun 1, YONG Qilong 1, SUN Xinjun 1, MAO Xinping 2, LI Zhaodong 1, YONG Xi 1
1. Institute of Structural Materials, Central Iron and Steel Research Institute, Beijing 100081
2. Guangzhou Zhujiang Steel Limited Liability Company, Guangzhou 510730
引用本文:

王长军 雍岐龙 孙新军 毛新平 李昭东 雍兮. Ti和Mn含量对CSP工艺Ti微合金钢析出特征与强化机理的影响[J]. 金属学报, 2011, 47(12): 1541-1549.
, , , , , . EFFECTS OF Ti AND Mn CONTENTS ON THE PRECIPITATE CHARACTERISTICS AND STRENGTHENING MECHANISM IN Ti MICROALLOYED STEELS
PRODUCED BY CSP[J]. Acta Metall Sin, 2011, 47(12): 1541-1549.

全文: PDF(1116 KB)  
摘要: 利用电子背散射衍射(EBSD)技术和高分辨透射电子显微镜(HRTEM)对不同Ti和Mn含量的CSP工艺Ti微合金钢进行了显微组织分析与析出相特征观察. 结果表明: 与Ti和Mn含量较低的钢相比, Ti和Mn含量较高的钢中, 不仅小角度晶界分布比例较高, 同时颗粒尺寸在 10 nm以下的TiC粒子析出数量显著增加, 而较大尺寸的M3C相(Fe3C)析出数量却有所减少.此外, 强化机理分析表明, 细晶强化与位错强化对两 实验钢的屈服强度贡献最大,而沉淀析出强化是造成两实验钢强度差别的主要原因.
关键词 CSP Ti微合金钢强化机理 力学性能    
Abstract:As an advanced manufacturing technology to produce hot rolled strips, compact strip production (CSP) process was developed at the end of last century and has been widely applied due to its high efficiency and low cost. Compared with the traditional technology, the advantages of CSP technology benefited from the refinement of austenitic grains and precipitation strengthening in the steels. This is because cooling rate is higher during the solidification of slab and the direct charging slab temperature is also higher in the CSP process, resulting in much higher solute contents in the solid solution before hot rolling than expected by the experiences from traditional steel production. So far, the Ti microalloyed steels produced by CSP process already have good performance and have drawn much attention on Ti precipitate behaviors and strengthening mechanism. However, the influence of alloying element Mn on the Ti microalloyed steels produced by CSP, especially the synergistic effect of Mn and Ti, was rarely reported. Therefore, in this work the microstructure and precipitate characteristics of two Ti microalloyed steels with different Ti and Mn contents produced by CSP process were studied by electron backscatter diffraction (EBSD) technology and high resolution transmission electron microscope (HRTEM). The results show that the steel with higher Ti and Mn contents has a higher frequency of small–angle grain boundary. Furthermore, the weight fraction of TiC precipitates with particle size smaller than 10 nm increases significantly, from 7.6% in the lower Ti and Mn steel to 26.1% in the higher Ti and Mn steel. However, the amount of Fe3C precipitates decreases markedly. In addition, the strengthening mechanism analysis of the two tested steels show that grain refinement strengthening and dislocation strengthening make great contribution to the yield strength, while the precipitation strengthening is the primary reason which causes the difference in the strength between two tested steels.
Key wordscompact strip production (CSP)    Ti microalloyed steel    strengthening mechanism    mechanical properties
收稿日期: 2011-06-20     
基金资助:

国家重点基础研究发展计划资助项目 2010CB630805

作者简介: 王长军, 男, 1984年生, 博士生
[1] Yu H, Kang Y L, Wang K L, Fu J, Wang Z B, Liu D L. Mater Sci Eng, 2003; A363: 86

[2] Huo X D, Liu D L, Wang Y L. J Univ Sci Technol Beijing, 2004; 11: 133

[3] Mao X P, Sun X J, Kang Y L, Lin Z Y. Acta Metall Sin, 2006; 42: 1091

(毛新平, 孙新军, 康永林, 林振源. 金属学报, 2006; 42: 1091)

[4] Yi H L, Du L X, Wang G D. ISIJ Int, 2006; 46: 754

[5] Misra R D K, Nathani H, Hartmann J E. Mater Sci Eng, 2005; A394: 339

[6] BaiMZ, Liu D L, Lou Y Z, Mao X P. J Univ Sci Technol Beijing, 2006; 13: 230

[7] Xu G, Gan X L, Ma G J. Mater Des, 2010; 31: 2891

[8] Liu D L, Wang Y L, Huo X D, Chen N J, Shao W R. Acta Metall Sin, 2002; 38: 647

(柳得橹, 王元立, 霍向东, 陈南京, 邵伟然. 金属学报, 2002; 38: 647)

[9] Kunishige K, Nagao N. ISIJ Int, 1989; 29: 940

[10] Mao X P, Sun X J, Kang Y L, Lin Z Y, Zhou J. Iron Steel, 2005; 40: 65

(毛新平, 孙新军, 康永林, 林振源, 周建. 钢铁, 2005; 40: 65)

[11] Liu W J, Jonas J J. Metall Trans, 1988; A19: 1403

[12] Liu W J, Jonas J J. Metall Trans, 1988; A19: 1415

[13] Bale G W, Liu W J, Jonas J J. Metall Trans, 1989; A20: 1371

[14] Zurob H S, Hutchinson C R, Brechet Y, Purdy G. Acta Mater, 2002; 50: 3075

[15] Maehara Y, Yotsumoto K, Tomono H, Nagamichi T, Ohmori Y. Mater Sci Technol, 1990; 6: 793

[16] Zhou J, Kang Y L, Mao X P. J Univ Sci Technol Beijing, 2008; 15: 389

[17] Nagata M T, Speer J G, Matlock D K. Metall Mater Trans, 2002; A33: 3099

[18] Yong Q L, Ma M T, Wu B R. Microalloyed Steel–Physical and Mechanical Metallurgy. Beijing: Mechanic Industry Press, 1989: 62

(雍岐龙, 马鸣图, 吴宝榕. 微合金钢--物理和力学冶金. 北京:机械工业出版社, 1989: 62)

[19] Ashby M F. Strengthening Methods in Crystals. London: Applied Science Publishers Ltd., 1971: 137

[20] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 47

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 47)

[21] Gladman T. Mater Sci Technol, 1999; 15: 30

[22] Mao X P. Microalloying Technology on Thin Slab Casting and Direct Rolling Process. Beijing: Metallurgical Industry Press, 2008: 100

(毛新平. 薄板坯连铸连轧微合金化技术. 北京: 冶金工业出版社, 2008: 100)

[23] Weng Y Q. Ultra–Fine Grained Steels. Beijing: Metallurgical Industry Press, 2008: 58

(翁宇庆. 超细晶钢. 北京: 冶金工业出版社, 2008: 58)

[24] Akben M G, Chandra T, Plassiard P, Jonas J J. Acta Metall, 1984; 32: 591

[25] Liu W J, Sun Y, Jonas J J. Metall Trans, 1989; A20: 1907

[26] Mizui N, Takayama T, Sekine K. ISIJ Int, 2008; 48: 845
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.