Please wait a minute...
金属学报  2011, Vol. 47 Issue (12): 1550-1554    DOI: 10.3724/SP.J.1037.2011.00395
  论文 本期目录 | 过刊浏览 |
超高压凝固条件下Mg-6Zn-3Y合金的晶体形态及相演变
林小娉1,董允1,徐瑞2,孙桂芳1,焦世辉1
1. 东北大学材料与冶金学院, 沈阳 110819
2. 燕山大学材料科学与工程学院, 秦皇岛 066004
CRYSTAL MORPHOLOGIES AND THE PHASES IN THE Mg–6Zn–3Y ALLOY SOLIDIFIED UNDER SUPER–HIGH PRESSURE
LIN Xiaoping 1, DONG Yun 1, XU Rui 2, SUN Guifang 1, JIAO Shihui 1
1. Department of Materials Science and Engineering, Northeastern University, Shenyang 110819
2. School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004
引用本文:

林小娉 董允 徐瑞 孙桂芳 焦世辉. 超高压凝固条件下Mg-6Zn-3Y合金的晶体形态及相演变[J]. 金属学报, 2011, 47(12): 1550-1554.
, , , , . CRYSTAL MORPHOLOGIES AND THE PHASES IN THE Mg–6Zn–3Y ALLOY SOLIDIFIED UNDER SUPER–HIGH PRESSURE[J]. Acta Metall Sin, 2011, 47(12): 1550-1554.

全文: PDF(827 KB)  
摘要: 利用扫描电镜(SEM)并配合能谱(EDS)分析研究了超高压凝固Mg-6Zn-3Y合金的晶体形态和相演变. 实验结果表明: 随着凝固压力的增大, α-Mg晶体的形态发生了粗大树枝晶→超细树枝晶→胞状晶转变,即晶体的生长方式逐渐由树枝晶生长→胞状生长过渡.GPa级超高压下凝固极大地提高了Zn在基体中的溶解度, 使之成为过饱和固溶体,并随着凝固压力的增大促使Zn的分布趋于均匀化. Mg-6Zn-3Y合金在2 GPa超高压凝固条件下形成了新相Y固溶体, 室温组织由4相组成; 在6 GPa超高压凝固条件下大量粒状相均匀弥散地分布在基体上, Mg-6Zn-3Y合金的硬度显著提高.
关键词 Mg-6Zn-3Y合金 超高压凝固 晶体形态 Y固溶体 粒状相    
Abstract:The solidification microstructure of Mg–6Zn–3Y alloy under super–high pressure was investigated by SEM and EDS. The results show that solidification microstructure of Mg–6Zn–3Y alloy under super–high pressure (GPa level) could be evidently refined and was further refined with the increase of solidification pressure. Solubility of Zn in the alloy reached up to 1.64% under 4 GPa pressure which was increased by 44% than that under the atmosphere condition. Y is insoluble in the matrix, which resulted in a new phase riched in Y and granular phases which were dispersed in the matrix. The morphology of crystal changes follow this way: bulky branch crystal→superfine branch crystal→cellular crystal, and the growth of crystal changed from branch growth to cellular growth.
Key wordsMg–6Zn–3Y alloy    super–high pressure solidification    dendritic crystal    cellular crystal    phase component
收稿日期: 2011-06-27     
基金资助:

河北省自然科学基金项目E2010001398和辽宁省自然科学基金项目20112063资助

作者简介: 林小娉, 女, 1961年生, 教授
[1] Qu Y D, Li R D, Yuan X G, Li C X, Xiang Q C. Foundry, 2005; 54: 539

(曲迎东, 李荣德, 袁晓光, 李晨曦, 向青春. 铸造, 2005; 54: 539)

[2] Kumar M. Physica, 1995; 212B: 391

[3] Батншeв А И, translated by Zhang J S. Crystallization of Metal and Alloys Under Pressure. Harbin: Harbin University of Techonology Press, 1987: 23

(Батншeв А И著, 张锦升译. 金属和合金在压力下结晶. 哈尔滨: 哈尔滨工业大学出版社, 1987: 23)

[4] Mi G B, Li P J, He L J. Chin J Nonferrous Met, 2009; 12:2074

(弭光宝, 李培杰, 何良菊. 中国有色金属学报, 2009; 12: 2074)

[5] Ebihara T, Uwatoko Y, Mohri N. J Magn Magn Mater, 2004; 272–276: e83

[6] Wang Z X, Lu J B, Xi Y J, Fan J W. J Alloys Compd, 2010; 492: 529

[7] Yu X F, Zhang G Z, Xiao H J, Pan A S, Jia G L, Gao Y Y. J Mater Res, 2000; 14(suppl): 141

(于溪凤, 张国志, 肖汉杰, 潘爱胜, 贾光霖, 高允彦. 材料研究学报, 2000; 14(增刊): 141)

[8] Zhang G Z, Yu X F, Wang X Y, Jia G L, Gao Y Y. Acta Metall Sin, 1999; 35: 285

(张国志, 于溪凤, 王向阳, 贾光霖, 高允彦. 金属学报, 1999; 35: 285)

[9] Yu X F, Zhang G Z, Wang X Y. J Mater Sci, 1999; 34: 4149

[10] Li R D, Huang Z P, Bai Y H, Yu H P. Spec Cast Nonferrous Alloys, 2003; (6): 16

(李荣德, 黄忠平, 白彦华, 于海朋. 特种铸造及有色合金, 2003; (6): 16)

[11] Wu R I, Wide G, Perepezko J H. J Mater Sci Technol, 2001; 301A: 12

[12] Yao W J, Wang N, Wei B. Mater Sci Eng, 2003; A344: 10

[13] Chen Z W, Jiang Y M, Chai Y. Foundry, 2009; 58: 887

(陈忠伟, 江雅民, 柴艳. 铸造, 2009; 58: 887)

[14] Xu R, Zhao H, Li J, Liu R, Wang W K. Mater Letts, 2006; 60: 783

[15] Kaibyshev F M R, Lesuer D R, Nieh T G. Mater Sci Eng, 2003; A342: 169

[16] Bao Y Q, Yuan C S, Bai Y H, Li R D. Foundry, 2011; 60: 533

(包艳青, 袁朝圣, 白彦华, 李荣德. 铸造, 2011; 60: 533)

[17] Liu C M, Zhu X R, Zhou H T. Magnesium Alloy Phase Atlas. Changsha: Central South University Press, 2007: 334

(刘楚明, 朱秀荣, 周海涛. 镁合金相图集. 长沙: 中南大学出版社, 2007: 334)

[18] Zhou H T, Zhang Z D, Liu C M, Wang Q W. Mater Sci Eng, 2007; A445–446: 1

[19] Yasuo F. J Phys: Condens Mater, 2002; 12: 10727

[20] Xu R, Zhao H, Li J, Liu R, Wang W K. Mater Lett, 2006; 60: 783

[21] Wang Z L. PhD Thesis, Harbin Institute of Technology, 2007

(王振玲. 哈尔滨工业大学博士学位论文, 2007)

[22] Li R D, Cao X S, Qu Y D, Xie Y, Li R X, Tian C. Chin J Nonferrous Met, 2009; 19: 1570

(李荣德, 曹修生, 曲迎东, 谢尧, 李润霞, 田畅. 中国有色金属学报, 2009; 19: 1570)

[23] Sun S H, Li J, Xu R, Zhao H L, Liu R P. Chin J High Pressure Phys, 2008; 22: 434

(孙淑华, 李 杰, 徐瑞, 赵海丽, 刘日平. 高压物理学报, 2008; 22: 434)

[24] Wang W K. Chin J High Pressure Phys, 1989; 3: 257

(王文魁. 高压物理学报, 1989; 3: 257)
[1] 张国导; 郝兆印 . 超高压凝固Al-Si合金的非平衡组织[J]. 金属学报, 1999, 35(3): 285-288 .
[2] 姜锡山;宫延生;张贵昌. 铸钢中(Mn,Fe)S单晶生长形态的研究[J]. 金属学报, 1988, 24(4): 295-298.