Please wait a minute...
金属学报  2011, Vol. 47 Issue (10): 1348-1354    DOI: 10.3724/SP.J.1037.2011.00246
  论文 本期目录 | 过刊浏览 |
Cu/X(X=Cr, Nb)纳米多层膜力/电学性能的尺度依赖性
张金钰,张欣,牛佳佳,刘 刚,张国君, 孙 军
西安交通大学金属材料强度国家重点实验室, 西安 710049
LENGTH SCALE DEPENDENT MECHANICAL/ELECTRICAL PROPERTIES OF Cu/X (X=Cr, Nb) NANOSTRUCTURED METALLIC MULTILAYERS
ZHANG Jinyu, ZHANG Xin, NIU Jiajia, LIU Gang, ZHANG Guojun, SUN Jun
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049
引用本文:

张金钰 张欣 牛佳佳 刘刚 张国君 孙军. Cu/X(X=Cr, Nb)纳米多层膜力/电学性能的尺度依赖性[J]. 金属学报, 2011, 47(10): 1348-1354.
, , , , . LENGTH SCALE DEPENDENT MECHANICAL/ELECTRICAL PROPERTIES OF Cu/X (X=Cr, Nb) NANOSTRUCTURED METALLIC MULTILAYERS[J]. Acta Metall Sin, 2011, 47(10): 1348-1354.

全文: PDF(1074 KB)  
摘要: 利用纳米压痕实验以及四探针法, 系统研究了相同层厚Cu/X(X=Cr, Nb)纳米金属多层膜的力学性能(强/硬度)和电学性能(电阻率)的尺度依赖性. 微观分析表明: Cu/X(多层膜调制结构清晰, Cu层沿{111}面择优生长, X(层沿{110}面择优生长.纳米压入结果表明, Cu/X(多层膜的强度依赖于调制周期, 并随调制周期的减小而增加. 多层膜变形机制在临界调制周期(λc≈25 nm)由Cu层内单根位错滑移转变为位错切割界面. 多层膜的电阻率不仅与表面/界面以及晶界散射相关, 而且在小尺度下受界面条件显著影响. 通过修正的FS-MS模型可以量化界面效应对多层膜电阻率的影响. Cu/$X$纳米多层膜可以通过调控微观结构实现强度-电导率的合理匹配.
关键词 Cu/Cr Cu/Nb 纳米多层膜 强度 电阻率 尺寸效应    
Abstract:By using nanoindentation test and four point probe method, the length scaled dependent mechanical property (hardness/strength) and electrical property (resistivity) of Cu/X(X=Cr, Nb) nanostructured metallic multilayers with equal individual layer thickness were systematically investigated. It is revealed from the microstructural analysis that the modulation structure of Cu/X metallic multilayers is clear, and the preferred growth planes of Cu layer and X layer are {111} and {110}, respectively. The indentation test shows that the hardness/strength of the multilayers increases with reducing modulation period λ. The deformation mechanism of the multilayers transits from the glide of single dislocation in a Cu layer to the interface cutting at a critical modulation period λcc ≈25 nm). The resistivity of Cu/X multilayers is not only related to the scattering of conduction electrons at surfaces/interfaces and grain boundaries, but also affected by the interface condition at small scale. This significant interface effect on the length scale–dependent resistivity is assessed using a modified FS–MS model. The best combination of strength–resistivity can be achieved by tailoring the microstructure of Cu/X nanostructured metallic multilayers.
Key wordsCu/Cr    Cu/Nb    nanostructured multilayer    strength    resistivity    size effect
收稿日期: 2011-04-19     
基金资助:

国家重点基础研究发展计划项目2010CB631003和国家自然科学基金项目50971097资助

作者简介: 张金钰, 男, 1982年生, 博士生
[1] Spearing S M. Acta Mater, 2000; 48: 179

[2] Suo Z G, Vlassak J, Wagner S. China Particuology, 2005; 3: 321

[3] Bakonyi I, P´eter L. Prog Mater Sci, 2010; 55: 107

[4] Was G S, Foecke T. Thin Solid Films, 1996; 286: 1

[5] Li Y P, Zhang G P. Acta Mater, 2010; 58: 3877

[6] Wang M, Zhang B, Zhang G P, Yu Q Y, Liu C S. J Mater Sci Technol, 2009; 25: 699

[7] Misra A, Krug H. Adv Eng Mater, 2001; 3: 217

[8] Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817

[9] Fu E G, Li N, Misra A, Hoagland R G, Wang H, Zhang X. Mater Sci Eng, 2008; A493: 283

[10] McKeown J, Misra A, Kung H, Hoagland R G, Nastasi M. Scr Mater, 2002; 46: 593

[11] Liu Y, Bufford D, Wang H, Sun C, Zhang X. Acta Mater, 2011; 59: 1924

[12] Anderson P M, Li C. Nanostruct Mater, 1995; 5: 349

[13] Embury J D, Hirth J P. Acta Metall Mater, 1994; 42: 2051

[14] Phillips M A, Clemens B M, Nix W D. Acta Mater, 2003; 51: 3171

[15] Koehler J S. Phys Rev, 1970; 2B: 547

[16] Rao S I, Hazzledine P M. Philos Mag, 2000; 80A: 2011

[17] Hoagland R G, Kurtz R J, Henager Jr C H. Scr Mater, 2004; 50: 775

[18] Schroder K, Hollander J. Thin Solid Films, 2004; 458: 322

[19] Liu H D, Zhao Y P, Ramanath G, Murarka S P, Wang G C. Thin Solid Films, 2001; 384: 151

[20] Liu M X, Xu K W. J Mater Res, 2008; 23: 1658

[21] Fuchs K. Proc Cambridge Philos Soc, 1938; 34: 100

[22] Sondheimer E H. Adv Phys, 2001; 50: 499

[23] Mayadas A F, Shatzkes M. Phys Rev, 1970; 1B: 1382

[24] Camacho J M, Oliva A I. Thin Solid Films, 2006; 515: 1881

[25] Durkan C, Welland M E. Phys Rev, 2000; 61B: 14215

[26] Jin X, Zhou Y, Kim C O, Lee Y P, Xu H B, Gong S K. J Appl Phys, 2002; 91: 6071

[27] Namba Y. Jpn J Appl Phys, 1970; 9: 1326

[28] Michez L A, Hickey B J, Shatz S, Wiser N. Phys Rev, 2004; 70B: 052402

[29] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 1564

[30] Deng X, Chawla N, Chawla K K, Koopman M. Acta Mater, 2004; 52: 4291

[31] Garrido Maneiro M A, Rodr´?guez J. Scr Mater, 2005; 52: 593

[32] Ma Z S, Long S G, Zhou Y C, Pan Y. Scr Mater, 2008; 59: 195

[33] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J. Scr Mater, 2010; 63: 101

[34] Misra A, Hundley M F, Hristova D, Kung H, Mitchell T E, Nastasi M, Embury J D. J Appl Phys, 1999; 85: 302

[35] Lima A L, Zhang X, Misra A, Booth C H, Bauer E D, Hundley M F. Thin Solid Films, 2007; 515: 3574

[36] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422

[37] Anderoglu O, Misra A, Wang H, Ronning F, Hundley M F, Zhang X. Appl Phys Lett, 2008; 93: 083108
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[3] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[4] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[7] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[8] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[9] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[10] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[11] 侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰. 突破强度-导电率制约关系:晶粒异构设计[J]. 金属学报, 2022, 58(11): 1467-1477.
[12] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[13] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[14] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[15] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.