Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 400-411    DOI: 10.11900/0412.1961.2021.00520
  综述 本期目录 | 过刊浏览 |
镁及其合金导热研究进展
曾小勤(), 王杰, 应韬, 丁文江
上海交通大学 材料科学与工程学院 上海 200240
Recent Progress on Thermal Conductivity of Magnesium and Its Alloys
ZENG Xiaoqin(), WANG Jie, YING Tao, DING Wenjiang
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
Xiaoqin ZENG, Jie WANG, Tao YING, Wenjiang DING. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. Acta Metall Sin, 2022, 58(4): 400-411.

全文: PDF(1917 KB)   HTML
摘要: 

本文简要回顾了国内外镁合金导热行为和导热机制的研究工作,梳理了影响镁合金导热的因素,如固溶原子、变形和温度等。在此基础上,归纳总结了高导热镁合金的发展,并讨论了导热与力学性能之间的倒置关系,最后提出高导热镁合金的设计思路和发展方向。主要结论如下:固溶原子会导致晶格畸变而降低镁合金热导率,与其化合价、原子半径和原子核额外电子有关;第二相与Mg基体的界面会对电子运动产生阻碍作用,进而削弱热导性能,具体与其形貌、尺寸、分布和含量相关;对于变形镁合金,沿径向或法向方向的导热性能往往优于挤压或轧制方向;温度是影响镁合金热导率的重要因素,在不同的温度区间内,热导率的主要散射机制不同,一般需要对各温度区间分开讨论。未来关于导热镁合金的研究仍有必要继续深入,可以重点聚焦于以下方面:镁合金显微组织与其导热性能的关系量化;多元镁合金的导热行为及其导热模型的建立;高导热镁合金成分设计与组织控制;镁合金导热行为的物理本质探究。

关键词 镁合金热导率电阻率固溶原子热处理    
Abstract

This article reviews recent progress on the thermal conductivity of magnesium and its alloys. First, lattice distortion induced by solute atoms negatively impacts the thermal conductivity of Mg alloys, which is correlated to three properties of solute atoms: atomic radius, chemical valency, and extra-nuclear electrons. Second, the formation of intermetallic compounds, which is accompanied by the creation of new phase interfaces that act as barriers to the movement of electrons, negatively impacts the thermal conductivity of Mg alloys. This negative effect is correlated to the morphology, size, distribution, and content of secondary phases. Thermal conductivity along the transverse or normal direction is superior to that along the extrusion or rolling direction for wrought Mg alloys with basal texture. Further, temperature significantly influences the thermal conductivity of Mg alloys; however, the underlying mechanisms vary depending on the temperature range and should be discussed separately. These aspects of research on Mg alloys with high thermal conductivity are still necessary in the future: quantifying the relationship between microstructure and thermal conductivity; thermal behavior of multicomponent Mg alloys and the establishment of its thermal conductivity model; compositional design and microstructural control of high thermal conductivity Mg alloys; physical nature of thermal behavior in Mg alloys.

Key wordsmagnesium alloy    thermal conductivity    electrical resistivity    solute atom    heat treatment
收稿日期: 2021-11-30     
ZTFLH:  TB31  
基金资助:国家重点研发计划项目(2021YFB3701101);国家重点研发计划项目(2020YFB1505901)
作者简介: 曾小勤,男,1974年生,教授,博士
图1  合金元素对镁合金室温热导率的影响[14]
图2  二元镁合金热阻率及电阻率随成分变化[18]
图3  固溶处理二元镁合金热导率随合金元素含量的变化:元素以固溶原子形式存在,及元素以第二相形式存在[14]
图4  铸态、固溶态和时效态Mg-Nd二元合金热扩散系数和热导率随Nd含量的变化[25]
图5  挤压态 Mg-Al 合金热导率的各向异性[40]
图6  铸态Mg-Al二元合金的热导率[43]
图7  Mg-Zn、Mg-Al和Mg-Mn合金以及纯Mg的热导率随温度的变化[17]
AlloyProcessing conditionThermalMechanical property
(mass fraction / %)conductivity
YSUTSEl
W·m-1·K-1
MPaMPa%
Pure Mg[1]157.3
Mg-4Zn-1Mn[30]As-cast118.1---
T4 (643 K, 12 h)127.6---
T6 (643 K, 12 h + 423 K, 10 h)130.4---
Mg-6Zn[18]As-cast114.3---
T4 (633 K, 48 h)108.7---
T6 (633 K, 48 h + 433 K, 60 h)115.972--
Mg-6Zn-1Cu[18]As-cast121.3
T6 (703 K, 48 h + 433 K, 60 h)128.994--
Mg-5Zn-1Mn[52]As-cast98.3
T4 (643 K, 12 h) + extruded at 623 K (16 ∶ 1)106.017729119.3
T4 (643 K, 12 h) + extruded at 623 K (16 ∶ 1) +26832114.8
T6 (448 K, 36 h)
T4 (643 K, 12 h) + extruded at 623 K (16 ∶ 1 ) +31034712.5
T6 (673 K, 1.5 h + 448 K, 20 h)
Mg-3Al-1Zn[53]As-extruded96.4---
Mg-9Al-1Zn[54]As-cast51.2---
Extruded + T4 (688 K, 5 h)47.3---
As-extruded46.9---
Extruded + T6 (688 K, 5 h + 473 K, 8 h)47.9---
Mg-0.1Mn[55]T4 (773 K, 24 h) + extruded at 623 K142.1---
Mg-0.5Mn[55]T4 (773 K, 24 h) + extruded at 623 K132.2---
Mg-1.5Mn[55]T4 (773 K, 24 h) + extruded at 623 K124.7---
Mg-4Y-2Zn[56]As-cast82.8---
Mg-12Gd[55]T6 (798 K, 24 h + 498 K, 24 h)56.998.5--
Mg-2Gd-2Nd-2Y-As-cast55.01111838.1
1Ho-1Er-0.5Zn-0.4Zr[57]T4 (793 K, l6 h)44.113220810.3
T6 (793 K, 16 h + 473 K, 82 h)52.52153065.7
表1  常见镁合金的热导率和力学性能[1,18,30,52~57]
1 Ding W J. Science and Technology of Magnesium Alloy [M]. Beijing: Science Press, 2007: 1
1 丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007: 1
2 Touloukian Y S, Powell R W, Ho C Y, et al. Thermal Conductivity: Metallic Elements and Alloys [M]. New York: IFI/Plenum, 1970: 1
3 Mordike B L, Ebert T. Magnesium: Properties-applications-potential [J]. Mater. Sci. Eng, 2001, A302: 37
4 Kaviany M, Kanury A M. Principles of heat transfer [J]. Appl. Mech. Rev., 2002, 55: B100
5 Caro M, Béland L K, Samolyuk G D, et al. Lattice thermal conductivity of multi-component alloys [J]. J. Alloys Compd., 2015, 648: 408
6 Huang L, Liu S H, Du Y, et al. Thermal conductivity of the Mg-Al-Zn alloys: Experimental measurement and CALPHAD modeling [J]. Calphad, 2018, 62: 99
7 Chen Y J, Zhang P, Wang R Z. Thermal conductivity measurements of solid materials at low temperatures [J]. Cryog. Supercond., 2010, 38(6): 1
7 陈艳婕, 张 鹏, 王如竹. 固体材料低温热导率的测量 [J]. 低温与超导, 2010, 38(6): 1
8 Shahil K M F, Balandin A A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials [J]. Solid State Commun., 2012, 152: 1331
9 Sun W C, Wu G L. Test method for basic thermophysical properties of metals and insulating materials [J]. Chin. Space Sci. Technol., 1982, 2(1): 55
9 孙文超, 吴观乐. 金属和绝缘材料基本热物理性能测试方法 [J]. 中国空间科学技术, 1982, 2(1): 55
10 Li K W, Liu Y W, Zhang J, et al. Thermal conductivity of graphene and its testing methods [J]. Chem. Bull., 2017, 80: 603
10 李坤威, 刘亚伟, 张 剑 等. 石墨烯导热性能及其测试方法 [J]. 化学通报, 2017, 80: 603
11 Wang C M, Chen Y G, Xiao S F. Situation of research and development of thermal conductive magnesium alloys [J]. Rare Met. Mater. Eng., 2015, 44: 2596
11 王春明, 陈云贵, 肖素芬. 导热镁合金的研究与开发现状 [J]. 稀有金属材料与工程, 2015, 44: 2596
12 Rzychoń T, Kiełbus A. The Influence of rare earth, strontium and calcium on the thermal diffusivity of Mg-Al alloys [J]. Defect. Diffus. Forum, 2011, 312-315: 824
13 Rudajevová A, Kiehn J, Kainer K U, et al. Thermal diffusivity of short-fibre reinforced Mg-Al-Zn-Mn alloy [J]. Scr. Mater., 1998, 40: 57
14 Su C Y, Li D J, Luo A A, et al. Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: A quantitative study [J]. J. Alloys Compd., 2018, 747: 431
15 Zhong L P, Peng J, Sun S, et al. Microstructure and thermal conductivity of as-cast and as-solutionized Mg-rare earth binary alloys [J]. J. Mater. Sci. Technol., 2017, 33: 1240
16 Pan H C, Pan F S, Yang R M, et al. Thermal and electrical conductivity of binary magnesium alloys [J]. J. Mater. Sci., 2014, 49: 3107
17 Ying T, Chi H, Zheng M Y, et al. Low-temperature electrical resistivity and thermal conductivity of binary magnesium alloys [J]. Acta Mater., 2014, 80: 288
18 Pan H C. Investigations on thermal conductivity of magnesium alloys [D]. Chongqing: Chongqing University, 2013
18 潘虎成. 镁合金导热性能的研究 [D]. 重庆: 重庆大学, 2013
19 Zhong L P, Wang Y J, Gong M, et al. Effects of precipitates and its interface on thermal conductivity of Mg-12Gd alloy during aging treatment [J]. Mater. Charact., 2018, 138: 284
20 Su C Y. Thermal mechanism of magnesium alloys based on solute atom and second phase [D]. Shanghai: Shanghai Jiao Tong University, 2019
20 苏创业. 基于固溶原子和第二相的镁合金导热机制研究 [D]. 上海: 上海交通大学, 2019
21 Dai X T, Ma M L, Zhang K, et al. Effect of Ce on microstructure and thermal conductivity of as-cast Mg-6Zn alloy [J]. J. Mater. Eng., 2020, 48(1): 92
21 代晓腾, 马鸣龙, 张 奎 等. Ce对铸态Mg-6Zn合金组织与导热性能的影响 [J]. 材料工程, 2020, 48(1): 92
22 Eivani A R, Ahmed H, Zhou J, et al. Correlation between electrical resistivity, particle dissolution, precipitation of dispersoids, and recrystallization behavior of AA7020 aluminum alloy [J]. Metall. Mater. Trans., 2009, 40A: 2435
23 Pan H C, Pan F S, Wang X, et al. Correlation on the electrical and thermal conductivity for binary Mg-Al and Mg-Zn alloys [J]. Int. J. Thermophys., 2013, 34: 1336
24 Dai X T, Ma M L, Li Y J, et al. Effect of heat treatment on microstructure and thermal conductivity of Mg-6Zn-xCe alloy [J]. Chin. J. Nonferrrous Met., 2021, 31: 639
24 代晓腾, 马鸣龙, 李永军 等. 热处理对Mg-6Zn-xCe合金组织与导热性能的影响 [J]. 中国有色金属学报, 2021, 31: 639
25 Su C Y, Li D J, Ying T, et al. Effect of Nd content and heat treatment on the thermal conductivity of Mg-Nd alloys [J]. J. Alloys Compd., 2016, 685: 114
26 Choi S W, Cho H S, Kumai S. Effect of the precipitation of secondary phases on the thermal diffusivity and thermal conductivity of Al-4.5Cu alloy [J]. J. Alloys Compd., 2016, 688: 897
27 Zhao J, Li J M, Zhao L M, et al. Thermal conductivity and electrical conductivity of Cu-37.67Zn-1.43A1 alloy with high pressure heat treatment [J]. Chin. J. Rare Met., 2015, 39: 97
27 赵 军, 李冀蒙, 赵陆民 等. 高压热处理对Cu-37.67Zn-1.43Al合金导热及导电性能的影响 [J]. 稀有金属, 2015, 39: 97
28 Wang C M, Liu H M, Chen Y G, et al. Effect of precipitates on thermal conductivity of aged Mg-5Sn alloy [J]. Philos. Mag., 2017, 97: 1698
29 Yuan J W, Zhang K, Zhang X H, et al. Thermal characteristics of Mg-Zn-Mn alloys with high specific strength and high thermal conductivity [J]. J. Alloys Compd., 2013, 578: 32
30 Yuan J W, Li T, Li X G, et al. Homogenizing heat treatment and thermal conductivity of Mg-4Zn-1Mn magnesium alloy [J]. Trans. Mater. Heat Treat., 2012, 33(4): 27
30 袁家伟, 李 婷, 李兴刚 等. Mg-4Zn-1Mn镁合金均匀化热处理及导热率 [J]. 材料热处理学报, 2012, 33(4): 27
31 Wang C M, Cui Z M, Liu H M, et al. Electrical and thermal conductivity in Mg-5Sn alloy at different aging status [J]. Mater. Des., 2015, 84: 48
32 Page M A M, Weidenfeller B, Hartmann S. Influence of temperature and aging on the thermal diffusivity, thermal conductivity and heat capacity of a zinc die casting alloy [J]. J. Alloys Compd., 2019, 786: 1060
33 Lin G Y, Zhang Z P, Wang H Y, et al. Enhanced strength and electrical conductivity of Al-Mg-Si alloy by thermo-mechanical treatment [J]. Mater. Sci. Eng., 2016, A650: 210
34 Zhong L P, Peng J, Li M, et al. Effect of Ce addition on the microstructure, thermal conductivity and mechanical properties of Mg-0.5Mn alloys [J]. J. Alloys Compd., 2016, 661: 402
35 Ying T, Zheng M Y, Li Z T, et al. Thermal conductivity of as-cast and as-extruded binary Mg-Zn alloys [J]. J. Alloys Compd., 2015, 621: 250
36 Yuan J W, Zhang K, Li T, et al. Anisotropy of thermal conductivity and mechanical properties in Mg-5Zn-1Mn alloy [J]. Mater. Des., 2012, 40: 257
37 Yang C B, Pan F S, Chen X H, et al. Thermal conductivity and mechanical properties of Sm-containing Mg-Zn-Zr alloys [J]. Mater. Sci. Technol., 2018, 34: 138
38 Liu Y F, Jia X J, Qiao X G, et al. Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg-4Al magnesium alloys [J]. J. Alloys Compd., 2019, 806: 71
39 Pan H C, Pan F S, Peng J, et al. High-conductivity binary Mg-Zn sheet processed by cold rolling and subsequent aging [J]. J. Alloys Compd., 2013, 578: 493
40 Ying T, Zheng M Y, Li Z T, et al. Thermal conductivity of as-cast and as-extruded binary Mg-Al alloys [J]. J. Alloys Compd., 2014, 608: 19
41 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
42 Zhong L, Peng J, Sun Y, et al. Microstructure and thermal conductivity of as-cast and as-extruded binary Mg-Mn alloys [J]. Mater. Sci. Technol., 2017, 33: 92
43 Ying T. Thermal behavior of pure magnesium and binaray magnesium alloys [D]. Harbin: Harbin Institute of Technology, 2015
43 应 韬. 纯镁和二元镁合金的导热行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
44 Galeazzi M, Bogorin D F, Prasai K, et al. Note: Thermal properties of magnesium in the 60-150 mK range [J]. Rev. Sci. Instrum., 2010, 81: 076105
45 Bakhtiyarov S I, Overfelt R A, Teodorescu S G. Electrical and thermal conductivity measurements on commercial magnesium alloys [A]. Proceedings of Magnesium Technology 2003 [C]. The Minerals, Metals & Materials Society, 2003: 129
46 Rudajevová A, Kúdela S, Staněk M, et al. Thermal properties of Mg-Li and Mg-Li-Al alloys [J]. Mater. Sci. Technol., 2003, 19: 1097
47 Yamasaki M, Kawamura Y. Thermal diffusivity and thermal conductivity of Mg-Zn-rare earth element alloys with long-period stacking ordered phase [J]. Scr. Mater., 2009, 60: 264
48 Kemp W R G, Sreedhar A K, White G K. The thermal conductivity of magnesium at low temperatures [J]. Proc. Phys. Soc., 1953, 66A: 1077
49 Ho C Y, Ackerman M W, Wu K Y, et al. Thermal conductivity of ten selected binary alloy systems [J]. J. Phys. Chem. Ref. Data, 1978, 7: 959
50 Peet M J, Hasan H S, Bhadeshia H K D H. Prediction of thermal conductivity of steel [J]. Int. J. Heat Mass Transfer, 2011, 54: 2602
51 Chester G V, Thellung A. The law of wiedemann and franz [J]. Proc. Phys. Soc., 1961, 77: 1005
52 Yuan J W. Study on properties of Mg-Zn-Mn alloys with high thermal conductivity [D]. Beijing: General Research Institute for Nonferrous Metals, 2013
52 袁家伟. 高导热Mg-Zn-Mn合金及其性能研究 [D]. 北京: 北京有色金属研究总院, 2013
53 Ren L B, Quan G F, Jiang Z Z, et al. Atmospheric heat dispersion research of Mg-Al-Zn magnesium alloys [J]. Rare Met. Mater. Eng., 2017, 46: 1265
53 任凌宝, 权高峰, 江柱中 等. Mg-Al-Zn系镁合金在大气中的散热性能研究 [J]. 稀有金属材料与工程, 2017, 46: 1265
54 Li S B, Yang X Y, Hou J T, et al. A review on thermal conductivity of magnesium and its alloys [J]. J. Magnes. Alloy., 2020, 8: 78
55 Zhong L P. Research on thermal conductivity of Mg-RE alloys and the development of high thermal conductivity of magnesium alloys [D]. Chongqing: Chongqing University, 2016
55 钟丽萍. 稀土镁合金导热性能及高导热镁合金研究 [D]. 重庆: 重庆大学, 2016
56 Liu X Q, Wu Y J, Liu Z L, et al. Thermal and electrical conductivity of as-cast Mg-4Y-xZn alloys [J]. Mater. Res. Express, 2018, 5: 066532
57 Li G Q, Zhang J H, Wu R Z, et al. Development of high mechanical properties and moderate thermal conductivity cast Mg alloy with multiple RE via heat treatment [J]. J. Mater. Sci. Technol., 2018, 34: 1076
58 Agarwal R, Fries S G, Lukas H L, et al. Assessment of the Mg-Zn system [J]. Int. J. Mater. Res., 1992, 83: 216
59 Zhou L, Huang Y D, Mao P L, et al. Investigations on hot tearing of Mg-Zn-(Al) alloys [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 125
60 Zhou L, Huang Y D, Mao P L, et al. Influence of composition on hot tearing in binary Mg-Zn alloys [J]. Int. J. Cast Met. Res., 2011, 24: 170
61 Wang J, Zhu G M, Wang L Y, et al. Origins of high ductility exhibited by an extruded magnesium alloy Mg-1.8Zn-0.2Ca: Experiments and crystal plasticity modeling [J]. J. Mater. Sci. Technol., 2021, 84: 27
62 Peng J, Zhong L P, Wang Y J, et al. Effect of Ce addition on thermal conductivity of Mg-2Zn-1Mn alloy [J]. J. Alloys Compd., 2015, 639: 556
63 Pan H, Pan F, Wang X, et al. High conductivity and high strength Mg-Zn-Cu alloy [J]. Mater. Sci. Technol., 2014, 30: 759
64 Li B C, Hou L G, Wu R Z, et al. Microstructure and thermal conductivity of Mg-2Zn-Zr alloy [J]. J. Alloys Compd., 2017, 722: 772
65 Chartrand P, Pelton A D. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the Al-Mg, Al-Sr, Mg-Sr, and Al-Mg-Sr systems [J]. J. Phase Equil., 1994, 15: 591
66 Zhu G M, Wang L Y, Wang J, et al. Highly deformable Mg-Al-Ca alloy with Al2Ca precipitates [J]. Acta Mater., 2020, 200: 236
67 Rudajevová A, Lukáč P. Comparison of the thermal properties of AM20 and AS21 magnesium alloys [J]. Mater. Sci. Eng., 2005, A397: 16
68 Rudajevová A, Staněk M, Lukáč P. Determination of thermal diffusivity and thermal conductivity of Mg-Al alloys [J]. Mater. Sci. Eng., 2003, A341: 152
69 Peng J, Zhong L P, Wang Y J, et al. Effect of extrusion temperature on the microstructure and thermal conductivity of Mg-2.0Zn-1.0Mn-0.2Ce alloys [J]. Mater. Des., 2015, 87: 914
70 Massalski T B, Okamoto H. Binary Alloy Phase Diagrams [M]. Okamoto: ASM International, 1990: 1
71 Masoumi M, Hoseini M, Pekguleryuz M. The influence of Ce on the microstructure and rolling texture of Mg-1%Mn alloy [J]. Mater. Sci. Eng., 2011, A528: 3122
72 Stanford N. The effect of calcium on the texture, microstructure and mechanical properties of extruded Mg-Mn-Ca alloys [J]. Mater. Sci. Eng, 2010, A528: 314
73 Han G, Ma G L, Liu X F. Effect of manganese on the microstructure of Mg-3Al alloy [J]. J. Alloys Compd., 2009, 486: 136
74 Wang J, Wang L Y, Zhu G M, et al. Understanding the high strength and good ductility in LPSO-containing Mg alloy using synchrotron X-ray diffraction [J]. Metall. Mater. Trans., 2018, 49A: 5382
75 Rudajevová A, von Buch F, Mordike B L. Thermal diffusivity and thermal conductivity of MgSc alloys [J]. J. Alloys Compd., 1999, 292: 27
76 Chen C J, Wang Q D, Yin D D. Thermal properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy [J]. J. Alloys Compd., 2009, 487: 560
77 Xiang S L, Gupta M, Wang X J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Composites, 2017, 100A: 183
78 Hou J T, Du W B, Parande G, et al. Significantly enhancing the strength + ductility combination of Mg-9Al alloy using multi-walled carbon nanotubes [J]. J. Alloys Compd., 2019, 790: 974
79 Deng K K, Wang C J, Nie K B, et al. Recent research on the deformation behavior of particle reinforced magnesium matrix composite: A review [J]. Acta Metall. Sin. (Eng. Lett.), 2019, 32: 413
80 Hou J T, Du W B, Wang Z H, et al. Combination of enhanced thermal conductivity and strength of MWCNTs reinforced Mg-6Zn matrix composite [J]. J. Alloys Compd., 2020, 838: 155573
81 Yao F J, You G Q, Zeng S, et al. Fabrication, microstructure, and thermal conductivity of multilayered Cu mesh/AZ31 Mg foil composites [J]. J. Mater. Res. Technol., 2021, 14: 1539
82 Ma H B, Wang J H, Wang H Y, et al. Influence of nano-diamond content on the microstructure, mechanical and thermal properties of the ZK60 composites [J]. J. Magnes. Alloys, doi: 10.1016/j.jma.2021.03.034
83 Hou L G, Wu R Z, Wang X D, et al. Microstructure, mechanical properties and thermal conductivity of the short carbon fiber reinforced magnesium matrix composites [J]. J. Alloys Compd., 2017, 695: 2820
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[3] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[4] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[5] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[6] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[7] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[10] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[13] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[14] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[15] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.