Please wait a minute...
金属学报  2011, Vol. 47 Issue (2): 236-240    DOI: 10.3724/SP.J.1037.2010.00396
  论文 本期目录 | 过刊浏览 |
Bridgman法制备塑性钛基轻质非晶复合材料
张建庭, 乔珺威, 张勇
北京科技大学新金属材料国家重点实验室, 北京 100083
SYNTHESIS OF PLASTIC LIGHTWEIGHT Ti-BASED METALLIC-GLASS-MATRIX COMPOSITES BY BRIDGMAN SOLIDIFICATION
ZHANG Jianting, QIAO Junwei, ZHANG Yong
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

张建庭 乔珺威 张勇 . Bridgman法制备塑性钛基轻质非晶复合材料[J]. 金属学报, 2011, 47(2): 236-240.
, , . SYNTHESIS OF PLASTIC LIGHTWEIGHT Ti-BASED METALLIC-GLASS-MATRIX COMPOSITES BY BRIDGMAN SOLIDIFICATION[J]. Acta Metall Sin, 2011, 47(2): 236-240.

全文: PDF(902 KB)  
摘要: 通过Bridgman定向凝固法成功制备了内生枝晶增塑的轻质钛基非晶复合材料. 与传统的Cu模吸铸法相比, Bridgman法有效消除了铸态组织中的孔洞, 得到了更均匀的微观组织, 且能通过调节抽拉速度来控制枝晶相的尺寸和分布, 进而优化其力学性能. 当抽拉速度为1.4 mm/s时, 合金压缩屈服强度、断裂强度和断裂塑性分别达到1956 MPa, 2706 MPa和18.0%, 且有明显的加工硬化现象. 进一步讨论了枝晶跨越长度$L$和枝晶间距$S$与力学性能的关系, 发现L在约40 μm时对材料的塑性贡献最大.
关键词 大块非晶定向凝固 钛基非晶复合材料力学性能    
Abstract:A series of lightweight Ti-based ductile in-situ dendrite-reinforced metallic-glass-matrix composites were synthesized by Bridgman solidification. Compared to Cu-mould suction casting, the $\beta$-Ti dendrites were uniformly distributed within the glass matrix by this method. Through tailoring the withdrawal velocity, the volume fraction and the characteristic spanning length of dendrites could be changed, which provides a way to optimize the mechanical properties of the composites. The Ti-based composite with excellent mechanical performances (high ultimate strength of 2706 MPa and large plasticity of 18.0% with apparent work-hardening behavior) was synthesized when the withdrawal velocity was fixed at 1.4 mm/s. The relationship between the size of the dendrites and the mechanical properties was investigated, and it was found that the improved mechanical properties were obtained when the size of the dendrited approached about 40 μm.
Key wordsbulk metallic glasses    Bridgman solidification    Ti-based metallic-glass-matrix composites    mechanical property
收稿日期: 2010-08-10     
基金资助:

国家重点基础研究发展计划资助项目2007CB613903

作者简介: 张建庭, 男, 1986年生, 硕士生
[1] Klement W, Willens R H, Duwez P. Nature, 1960; 187: 869

[2] Miller M L, Liaw P K. Bulk Metallic Glasses. New York: Springer, 2007: 1

[3] Schuh C A, Hufnagel T C, Ramamurty U. Acta Mater, 2007; 55: 4067

[4] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H. Science, 2007; 315: 1385

[5] Yokoyama Y, FujitaK, Yavari A R, Inoue A. Philosophical Magazine, 2009; 89: 322

[6] Fan C, Li C F, Inoue A. Phys Rev, 2000; 61B: 3761

[7] Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 2901

[8] Ma H, Xu J, Ma E. Appl Phys Lett, 2003; 83: 2793

[9] Guo S F, Liu L, Li N, Li Y. Scr Mater, 2010; 62: 329

[10] Hofmann D C, Suh J Y, Wiset A, Duan G, Lind M L, Demetriou M D, Johnson W L. Nature, 2008; 451: 1085

[11] Hofmann D C, Suh J Y, Wiset A, Duan G, Lind M L, Demetriou M D, Johnson W L. PNAS, 2008; 105: 20136

[12] Wang D, Tan H, Li Y. Acta Mater, 2005; 53: 2969

[13] Sun G Y, Chen G, Liu C T, Chen G L. Scr Mater, 2006; 55: 375

[14] Qiao J W, Zhang Y, Liaw P K. Adv Eng Mater, 2008; 10: 1039

[15] Qiao J W, Wang S, Zhang Y, Liaw P K, Chen G L. Appl Phys Lett, 2009; 94: 151905

[16] Tan H, Zhang Y, Li Y. Intermetallics, 2002; 10: 1203

[17] Lin X H, Johnson W L. J Appl Phys, 1995; 78: 6514

[18] Wu F F, Zhang Z F, Mao S X, Peker A, Eckert J. Phys Rev, 2007; 75B: 134201

[19] Lee M L, Li Y, Schuh C A. Acta Mater, 2004; 52: 4121

[20] Sun G Y, Chen G, Chen G L. Acta Metall Sin, 2006; 42: 331

(孙国元, 陈光, 陈国良. 金属学报, 2006; 42: 331)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.