Please wait a minute...
金属学报  2011, Vol. 47 Issue (2): 231-235    DOI: 10.3724/SP.J.1037.2010.00331
  论文 本期目录 | 过刊浏览 |
Al-Cr涂层低温扩散制备及其相组成的研究
李文川, 蔡俊, 凌国平
浙江大学材料科学与工程系, 杭州 310027
Al-Cr COATINGS PREPARED BY DIFFUSION AT LOW TEMPERATURE AND ITS PHASE CHARACTERIZATION
LI Wenchuan, CAI Jun, LING Guoping
Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
引用本文:

李文川 蔡俊 凌国平. Al-Cr涂层低温扩散制备及其相组成的研究[J]. 金属学报, 2011, 47(2): 231-235.
, , . Al-Cr COATINGS PREPARED BY DIFFUSION AT LOW TEMPERATURE AND ITS PHASE CHARACTERIZATION[J]. Acta Metall Sin, 2011, 47(2): 231-235.

全文: PDF(946 KB)  
摘要: 通过水溶液镀Cr后再用AlCl3-EMIC (氯化1-甲基3-乙基咪唑)离子液体镀Al, 制备Cr/Al复合镀层, 其后通过低温扩散热处理制备Al-Cr涂层. 用OM, SEM, BSE, EDS和XRD研究了短时间热处理时, 热处理温度对Al-Cr涂层组成和结构的影响. 结果表明, Cr/Al复合镀层在540 ℃时即可发生明显的互扩散, 形成Al-Cr合金层. 通过对复合镀层中Cr和Al镀层厚度的控制, 可以得到不同组成的Al-Cr合金涂层. 6.5 μm Cr/15 μm Al的复合镀层经640 ℃/960 min热处理, 表面形成以Al8Cr5为主的合金涂层; 1.6 μm Cr/15 μm Al的复合镀层经 600 ℃/30 min热处理, 可得到以Al4Cr为主的Al-Cr涂层.
关键词 Al-Cr涂层离子液体镀Al热处理    
Abstract:The Al-Cr coating exhibits a good steam oxidation resistance and can act as tritium permeation barrier. It is necessary to prepare Al-Cr coating at low temperatures to avoid detrimental effect on the mechanical properties of the substrate. In the present study, a new process was proposed to prepare Al-Cr coating by electrodeposition of Cr/Al composite coatings firstly, and then heat treatment at low temperatures. The Cr/Al composite coatings were obtained by electrodepositing Cr from aqueous solution followed by electrodepositing Al from AlCl3-EMIC ionic liquid. Effects of the temperature of heat treatment on the composition and phase of alloy layers were studied by using OM, SEM, BSE, EDS and XRD. The results showed that an Al-Cr alloy layer at the Cr/Al interface was formed even at low temperature of 540 ℃ by the interdiffuse between Al and Cr coating. The different Al-Cr alloy layers could be formed by controlling the thickness of Cr and Al in Cr/Al composite coatings. For 6.5 μm Cr/15 μm Al composite coating, the main phase was Al8Cr5 for 960 min heat treatment at 640 ℃, and for 1.6 μm Cr/15 μm Al composite coatings treated at 600 ℃ for 30 min, the main phase of alloy layer was Al4Cr.
Key wordsAl-Cr coating    ionic liquid    Al electrodeposition    heat treatment
收稿日期: 2010-07-08     
作者简介: 李文川, 男, 1985年生, 硕士生
[1] Zhang Y, Pint B A, Cooley K M, Haynes J A. Surf Coat Technol, 2008; 202: 3839

[2] Konys J, Aiello A, Benamati G, Giancarli L. Fus Sci Technol, 2005; 47: 844

[3] Han S L, Li H L, Wang S M, Jiang L J, Liu X P. Int J Hydrogen Energy, 2010; 35: 2689

[4] Geib F D, Rapp R A. Oxid Met, 1993; 40: 213

[5] Xiang Z D, Datta P K. Surf Coat Technol, 2004; 184: 108

[6] Wang Y Q, Zhang Y, Wilson D A. Surf Coat Technol, 2010; 204: 2737

[7] Si X, Lu B, Wang Z. J Mater Sci Technol, 2009; 25: 433

[8] Xiang Z D, Rose S R, Datta P K, Scheeffer M. Surf Coat Technol, 2009; 203: 1225

[9] Li Y, Ling G P, Liu K Z, Chen C A, Zhang G K. Trans Mater Heat Treat, 2009; 30(5): 182

(李岩, 凌国平, 刘柯钊, 陈长安, 张桂凯. 材料热处理学报, 2009; 30(5): 182)

[10] Nagasaki S, Hirabayashi M. Binary Alloy Phase Diagrams, Tokyo: AGNE Gijutsu Center Co. Ltd., 2002: 29

[11] He Z B, Zou B S, Kuo K H. J Alloys Compd, 2006; 417: L4

[12] Cao B B, Kuo K H. J Alloys Compd, 2008; 458: 238

[13] Wen K Y, Chen Y L, Kuo K H. Metall Trans, 1992; 23A: 2437

[14] Brushko B, Przei´orzy´nski B, Kowalska–Strzeciwilk E, Surowiec M. J Alloys Compd, 2006; 420: L1

[15] Barbier F, Manuelli D, Bouch´e K. Acta Metall, 1997; 36: 425

[16] Tunca N, Delamore G W, Smith R W. Metall Trans, 1990; 21A: 2919

[17] Mahdouk K, Gachon J C. J Phase Equilibria, 2000; 21(2): 157

[18] Okamoto H. J Phase Equilibria Diffus, 2008; 29(1): 112

[19] Grushko B, Kowalska–Strze.ciwilk E, Przepiorzynski B, Surowiec M. J Alloys Compd, 2005; 402: 98
[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[3] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[5] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[6] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[8] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[9] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[10] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[11] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[12] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.
[13] 王悦, 王继杰, 张昊, 赵泓博, 倪丁瑞, 肖伯律, 马宗义. 热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响[J]. 金属学报, 2021, 57(5): 613-622.
[14] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[15] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.