Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1173-1180    DOI: 10.3724/SP.J.1037.2010.00266
  论文 本期目录 | 过刊浏览 |
单晶Cu纳米杆拉伸力学特性的尺寸依赖性模拟
白清顺,童振,梁迎春,陈家轩,王治国
哈尔滨工业大学机电工程学院, 哈尔滨 150001
SIMULATION OF SCALE DEPENDENCY ON TENSILE MECHANICAL PROPERTIES OF SINGLE CRYSTAL COPPER NANO–ROD
BAI Qingshun, TONG Zhen, LIANG Yingchun, CHEN Jiaxuan, WANG Zhiguo
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001
引用本文:

白清顺 童振 梁迎春 陈家轩 王治国. 单晶Cu纳米杆拉伸力学特性的尺寸依赖性模拟[J]. 金属学报, 2010, 46(10): 1173-1180.
, , , , . SIMULATION OF SCALE DEPENDENCY ON TENSILE MECHANICAL PROPERTIES OF SINGLE CRYSTAL COPPER NANO–ROD[J]. Acta Metall Sin, 2010, 46(10): 1173-1180.

全文: PDF(4862 KB)  
摘要: 对圆形、方形截面形状的单晶Cu纳米杆拉伸变形过程进行了分子动力学模拟. 通过中心对称参数方法并结合位错形核理论分析了截面形状、截面面积和长细比对纳米杆拉伸力学特性的影响, 研究了单晶Cu纳米杆拉伸力学特性的尺寸依赖性. 结果表明: 首次屈服后, 纳米杆在“位错形核-位错延伸与滑移-晶格原子交叉滑移”的交替循环作用机制下, 产生塑性变形; 截面形状对纳米杆拉伸变形的初始塑性影响较小, 而对纳米杆拉伸力学特性的影响较大; 随着截面面积的增大, 两种截面形状的纳米杆都出现首次屈服点提前,屈服应力减小和弹性模量增大的现象; 与方形截面形状纳米杆相比, 圆形截面形状纳米杆的屈服应力的变化率较小, 其弹性模量的变化率较大; 当截面面积增大到500 nm2后, 两种截面形状纳米杆的弹性模量趋于稳定, 其值接近理论值84 GPa. 加大仿真规模后, 长细比对纳米杆的拉伸力学特性略有影响.
关键词 分子动力学 拉伸 纳米杆 位错形核 力学特性    
Abstract:The tension process of single crystal Cu nano–rods with different cross section shapes were simulated by molecular dynamics at atomic scale. Based on centrosymmetry parameter method and combined with the dislocation nucleation theory, the effect of cross–section shape, cross–sectional area and slenderness ratio on the tensile mechanical properties of the nano–rods were analyzed, and the scale dependency of tensile mechanical properties of the single crystal Cu nano–rods has been revealed. The results show that after first yield, the nano–rods produce plastic deformation under the "dislocation nucleation–extended dislocation and sliding–lattice atom cross–slip" mechanism of the alternating cycle. The geometry of cross-section has negligible effects on the tensile initial plasticity of the nano–rods, while it shows apparent effects on the tensile mechanical properties. With the increase of cross–sectional area, two types of nano–rods have the phenomenon of early yield point, yield strength decreases and young’modulus increases. Compared with that of the square cross–sectional nano–rod, the variable rate of yield stess of the circular cross-sectional nano–rod is smaller while the variable rate of young’s modulus is lager. As the cross–sectional area increases to 500 nm2, the young’s modulus of the two types of nano–rods become stable, and is close to the theoretical value of 84 GPa. Moreover, the slenderness ratio of the nano–rods has a slight effect on the tensile mechanical properties when the simulation size increased.
Key wordsmolecular dynamics    tension    nano–ro    islocation nucleation    mechanical properties
收稿日期: 2010-06-03     
ZTFLH: 

TG113.25

 
基金资助:

国家杰出青年科学基金项目50925521, 国家自然科学基金项目50705023, 哈尔滨工业大学科研创新基金项目HIT.NSRIF.2009012和黑龙江省自然科学基金项目E200903资助

作者简介: 白清顺, 男, 1974年生, 副教授, 博士
[1] Craihead HG. Science, 2000; 290(24): 1532 [2] Michalske TA, Houston JE. Acta Mater, 1998; 46(2): 391 [3] Greer JR, Oliver WC, Nix WD. Acta Mater, 2005; 53: 1821 [4] R. Komanduri, R. N. Chandrasekaran, L. M. Raff. Science. 2001; 43: 2237 [5] LING Haiyi, NI Xianggui, WANG Xiuxi. Acta Metall Sin, 2001; 37(8): 833 (梁海弋,倪向贵,王秀. 金属学报,2001; 37(8): 833) [6] Liang Haiyi, Wang Xiuxi, Wu Hengan. Acta Mech Sin, 2002; 34(2): 208 (梁海弋,王秀喜,吴恒安,王宇. 力学学报,2002; 34(2): 208) [7] XU Zhou, WANG Xiuxi, LIANG Haiyi. Chinese Journal of Materials Research, 2003; 17(3): 262 (徐洲,王秀喜,梁海弋. 材料研究学报,2003; 17(3): 262) [8] Doyama M, Kogure Y, Nozaki T, Kato Y. Phys Rev, 2003; 202B: 64 [9] T. Nozaki, Masao Doyama, Y. Kogure. Mater Sci Eng A, 2003; 350: 233 [10] Huang Dan, Tao Weiming, Guo Yimu. Acta Mech Solida Sin, 2005; 26(2): 241 (黄丹,陶伟明,郭乙木. 固体力学学报,2005; 26(2): 241) [11]LIANG Yingchun, CHEN Jiaxuan, BAI Qingshun. Acta Metall Sin, 2008; 44(8): 119 (梁迎春,陈家轩,白清顺,唐玉兰,陈明君. 金属学报,2008; 44(8): 119) [12] M. A. Tschopp, D.L. McDowell. J Mech Phys Solids, 2008; 56: 1806 [13] Ning Zhang, Xinhua Yang, Chuanyao Chen. Acta Mech Solida Sin, 2009; 30(3): 231 (张宇,杨新华,陈传尧. 固体力学学报,2009; 30(3): 231) [14] Daw M S, Baskes M I. Phys Rev B, 1984; 29(12): 8486 [15] Diao J K, Gall K, Dunn M L, Zimmerman J A. Acta Mater, 2006; 54: 643 [16] Swope W C, Anderson H C, Berens P H, Wilson K R. J Chem Phys, 1982; 76:637 [17] Nose S A. J Chem Phys, 1984; 84: 511 [18] Hoover W G. Phys Rev, 1985; 31A: 1695 [19] Kelchner C L, Plimpton S J, Hamilton J C. Phys Rev, 1998; 58B: 11085 [20] Guo Yu, Zhuang Zhuo, Li Xiaoyan. Chin J Theoretical and Applied Mech, 2006; 38(3): 398 (郭宇,庄茁,李晓雁. 力学学报,2006; 38: 398) [21] Hirth JP, Lothe J. Theory of Dislocations. New York: John Wiley and Sons, 1982; 757 [22] Mizubayashi H, Matsuno J, Tanimoto H. Scripta Materialia, 1999; 41(4): 443
[1] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[4] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[5] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[6] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[7] 曹富荣, 丁鑫, 项超, 尚会会. Mg-4.4Li-2.5Zn-0.46Al-0.74Y合金高温变形流动应力、组织演变与本构分析[J]. 金属学报, 2021, 57(7): 860-870.
[8] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[9] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[10] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[11] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[12] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[13] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[14] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[15] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.