Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1181-1185    DOI: 10.3724/SP.J.1037.2010.00346
  论文 本期目录 | 过刊浏览 |
Cr8Mo2SiV钢二次硬化机理的研究
迟宏宵1,2,马党参2,王昌2,陈再枝2,雍岐龙1,2
1. 昆明理工大学材料科学与工程学院, 昆明 650093
2. 钢铁研究总院结构材料研究所, 北京 100081
STUDY ON SECONDARY HARDENING MECHANISM OF Cr8Mo2SiV STEEL
CHI Hongxiao 1,2, MA Dangshen 2, WANG Chang 2, CHEN Zhaizhi 2, YONG Qilong 1,2
1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2. Institute for Structural Materials, Central Iron and Steel Research Institute, Beijing 100081
引用本文:

迟宏宵 马党参 王昌 陈再枝 雍岐龙. Cr8Mo2SiV钢二次硬化机理的研究[J]. 金属学报, 2010, 46(10): 1181-1185.
, , , , . STUDY ON SECONDARY HARDENING MECHANISM OF Cr8Mo2SiV STEEL[J]. Acta Metall Sin, 2010, 46(10): 1181-1185.

全文: PDF(1439 KB)  
摘要: 采用硬度计SEM, EDS, TEM和XRD研究了经深冷处理和未经深冷处理Cr8Mo2SiV钢的回火硬度、残余奥氏体含量和碳化物析出行为. 结果表明, Cr8Mo2SiV钢经1030℃淬火后,二次硬化峰值硬度出现在回火温度为520℃. 深冷处理能够显著减少残余奥氏体含量,进而提高二次硬化峰温度之前的回火硬度, 并使二次硬化峰向低温区移动20℃.在520℃回火处理, Cr8Mo2SiV钢的回火硬度随保温时间的延长而线性降低.Cr8Mo2SiV钢的二次硬化是残余奥氏体的转变和Mo2C的析出前期共同作用的结果,残余奥氏体的作用更大. Mo2C的析出前期合金元素Mo和C形成[Mo--C]偏聚团的G.P.区, 随回火时间延长, Mo2C析出并长大, 均匀弥分布于基体中.
关键词 冷作模具钢 二次硬化 残余奥氏体 碳化物    
Abstract:Cr8–type cold work die steels, such as Cr8Mo2SiV steel have been widely used in recent years due to high strength and high toughness, These steels have obvious secondary hardening effect. It has been widely reported that the secondary hardening mechanism of these die steels resulted from the combination of retained austenite and carbide precipitation. However, less attention has been paid on the secondary hardening of Cr8Mo2SiV steel. In order to investigate the secondary hardening mechanism of Cr8Mo2SiV steel, the hardness, retained austenite and precipitation of Cr8Mo2SiV steel were investigated in this paper by SEM, EDS, TEM and XRD analysis. Experimental results indicate that the secondary hardening peak of Cr8Mo2SiV steel which was quenched at 1030 ℃ appears at 520 ℃. Deep cryogenic treatment observably reduces the content of retained austenite, and thus increases the tempering hardness before secondary hardening peak and the secondary hardening peak shifted to low temperature by about 20 ℃. The tempered hardness of Cr8Mo2SiV steel decreased linearly wth the increase of soaking time when tempering at 520 ℃. The secondary hardening mechanism of Cr8Mo2SiV steel is the combination of the transformation of retained austenite and the earlstage of Mo2C precipitation, and the role of transformation of retained austenite is more obvious. The early tage of Mo2C–carbide precipitation is likely to be G.P. zone which ormed y [Mo–C] segregation group. As the tempering time extended, Mo2C precipitated, and it ws dispersive and uniformly distributed.
Key words cold work die steel    secondary hardening    retained austenite    carbide
收稿日期: 2010-07-13     
ZTFLH: 

TG142.1

 
基金资助:

国家科技支撑计划资助项目2007BAE510B04

作者简介: 迟宏宵, 男, 1983年生, 博士生
[1] Chen Z Z, Lan D N. Die and Mould Steel Manual. Beijing: Metallurgical Industry Press, 2002: 18 (陈再枝, 蓝德年. 模具钢手册. 北京: 冶金工业出版社, 2002: 18) [2] Ma D S, Liu J H, Chen Z Z, Kang A J, Chi H X. Iron Steel, 2008; 43(9): 67 (马党参, 刘建华, 陈再枝, 康爱军, 迟宏宵. 钢铁, 2008; 43(9): 67) [3] Kou K. J Iron Steel Inst, 1953; 173: 363 [4] Kou K. J Iron Steel Inst, 1953; 174: 223 [5] Wang R, Dunlop G L. Acta Metall, 1984; 32: 1591 [6] Fischmeister H F, Karag¨oz S, Andr´en H O. Acta Metall, 1988; 36: 817 [7] Wang R, Andr´en H O,Wisell H, Dunlop G L. Acta Metall Mater, 1992; 40: 1727 [8] Leitner H, Stiller K, Andr´en H O, Danoix F. Surf Interface Anal, 2004; 36: 540 [9] Akr´e J, Danoix F, Leitner H, Auger P. Ultramicroscop, 2009; 109: 518 [10] Chen Y, Chen Z Z, Dong H, Ma D S, Liu J H. Special Steel, 2004; 25(2): 35 (陈 鹰, 陈再枝, 董 瀚, 马党参, 刘建华. 特殊钢, 2004; 25(2): 35) [11] Chen Y, Chen Z Z, Dong H, Ma D S, Liu J H. J Iron Steel Res, 2006; 18(5): 29 (陈鹰, 陈再枝, 董瀚, 马党参, 刘建华. 钢铁研究学报, 2006; 18(5): 29) [12] Chen J R, Li C J. Solid Transformation in Metal and Alloy, Beijing: Metallurgical Industry Press, 1997: 86 (陈景榕, 李承基. 金属与合金中的固态相变. 北京: 冶金工业出版社, 1997: 86) [13] Nutting J. J Iron Steel Inst, 2969; 207: 872 [14] Wang M Q, Dong H, Wang Q, Li J X, Zhao L. J Iron Steel Res, 2003; 15(6): 42 (王毛球, 董瀚, 王琪, 李建新, 赵隆. 钢铁研究学报,2003; 15(6): 42) [15] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281 (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报. 2009; 45: 1281) [16] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1288 (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报. 2009; 45: 1288) [17] Hu Z F, Wu X F, Wang C X. Acta Metall Sin, 2003; 39: 585 (胡正飞, 吴杏芳, 王春旭. 金属学报. 2003; 39: 585)
[1] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[2] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[3] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[4] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[5] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[6] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[7] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[8] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[9] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[10] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[11] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[12] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[13] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[14] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[15] 刘锡荣, 张凯, 夏爽, 刘文庆, 李慧. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410.