Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 476-486    DOI: 10.11900/0412.1961.2019.00389
  综述 本期目录 | 过刊浏览 |
孪生诱发塑性钢拉伸与疲劳性能及变形机制
张哲峰(),邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏
中国科学院金属研究所 沈阳 110016
Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels
ZHANG Zhefeng(),SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(10318 KB)   HTML
摘要: 

随着汽车工业的高速发展,以开发先进高强钢为重点的车辆轻量化设计已经成为各大汽车厂商的发展共识。本文基于国内外孪生诱发塑性(TWIP)钢强韧性和抗疲劳设计的成果以及本课题组多年来在该领域的研究工作,系统地总结了TWIP钢的研究现状及最新进展,探讨了影响TWIP钢拉伸性能与变形机制的影响因素,包括合金成分、组织状态、应变速率等。重点介绍TWIP钢的高、低周疲劳性能和微观损伤行为,并提出一种客观评价和预测低周疲劳寿命的方法。从TWIP钢的服役环境和实际应用角度出发,试图为新一代高性能TWIP钢的开发提供新的思路和实验证据。

关键词 孪生诱发塑性钢拉伸强度塑性高周疲劳低周疲劳疲劳寿命损伤机制    
Abstract

With the development of automotive industry, it is necessary to develop advanced high-strength steels for the purpose of lightweight of car. Based on the systematic studies on the strengthening and toughening as well as fatigue design of the twinning-induced plasticity (TWIP) steels, the recent progress in this aspect is summarized and discussed. Among them, the strengthening and toughening mechanisms have been analyzed and further developed in terms of several influencing factors, including compositions, microstructure, strain rate and so on. Furthermore, the low-cycle and high-cycle fatigue behaviors and damage mechanisms were explored. For better understanding the intrinsic fatigue damage mechanism, a new low-cycle fatigue prediction model regarding the hysteresis loop energy during cyclic deformation was introduced. It is found that the energy damage model can well explain and evaluate the fatigue damage mechanism and predict the low-cycle fatigue life of the TWIP steels and other materials. Based on the new fatigue damage model, new TWIP steels with high service performance can be developed by adjusting their deformation and damage mechanisms rationally.

Key wordstwinning induced plasticity (TWIP) steel    tension    strength    plasticity    high-cycle fatigue    low-cycle fatigue    fatigue life    damage mechanism
收稿日期: 2019-11-14     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(51801216);国家自然科学基金项目(51771208);国家自然科学基金项目(U1664253)
通讯作者: 张哲峰     E-mail: zhfzhang@imr.ac.cn
Corresponding author: Zhefeng ZHANG     E-mail: zhfzhang@imr.ac.cn
作者简介: 张哲峰,男,1970年生,研究员,博士

引用本文:

张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
Zhefeng ZHANG, Chenwei SHAO, Bin WANG, Haokun YANG, Fuyuan DONG, Rui LIU, Zhenjun ZHANG, Peng ZHANG. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels. Acta Metall Sin, 2020, 56(4): 476-486.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00389      或      https://www.ams.org.cn/CN/Y2020/V56/I4/476

图1  合金元素对孪生诱发塑性(TWIP)钢拉伸应力-应变曲线的影响[7,8,9,10]
图2  Fe-Mn-C系和Fe-Mn-Si-Al系TWIP钢力学性能对比[9]
图3  TWIP钢中的强塑性倒置关系[14]
图4  梯度TWIP钢组织的优异强塑性匹配[16,17]
图5  应变速率对TWIP钢拉伸应力-应变曲线的影响[21]
图6  应变速率对TWIP钢强度与塑性的影响[21]
图7  TWIP钢拉伸过程中微观变形和损伤特征
图8  TWIP钢在拉伸过程中的孪生行为[24]
图9  TWIP钢高周疲劳性能[26,29]
图10  疲劳寿命预测模型和相关参量[7]
图11  TWIP钢的疲劳裂纹扩展行为[29]
图12  TWIP钢循环加载下微观变形和损伤机制[7,8]
[1] De Cooman B C, Kwon O, Chin K G. State-of-the-knowledge on TWIP steel [J]. Mater. Sci. Technol., 2012, 28: 513
[2] Gr?ssel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application [J]. Int. J. Plast., 2000, 16: 1391
[3] Wu S D, An X H, Han W Z, et al. Microstructure evolution and mechanical properties of fcc metallic materials subjected to equal channel angular pressing [J]. Acta Metall. Sin., 2010, 46: 257
[3] 吴世丁, 安祥海, 韩卫忠等. 等通道转角挤压过程中fcc金属的微观结构演化与力学性能 [J]. 金属学报, 2010, 46: 257
[4] An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1
[5] Liu R, Zhang Z J, Zhang P, et al. Extremely low-cycle fatigue behaviors of Cu and Cu-Al alloys: Damage mechanisms and life prediction [J]. Acta Mater., 2015, 83: 341
[6] Zhang Z F, Liu R, Zhang Z J, et al. Exploration on the unified model for fatigue properties prediction of metallic materials [J]. Acta Metall. Sin., 2018, 54: 1693
[6] 张哲峰, 刘 睿, 张振军等. 金属材料疲劳性能预测统一模型探索 [J]. 金属学报, 2018, 54: 1693
[7] Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction [J]. Acta Mater., 2016, 103: 781
[8] Shao C W, Zhang P, Liu R, et al. A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties: Importance of slip mode [J]. Acta Mater., 2016, 118: 196
[9] Yang H K, Zhang Z J, Tian Y Z, et al. Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2017, A690: 146
[10] Lee S M, Park I J, Jung J G, et al. The effect of Si on hydrogen embrittlement of Fe-18Mn-0.6C-xSi twinning-induced plasticity steels [J]. Acta Mater., 2016, 103: 264
[11] Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships [J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141
[12] Chen L, Kim H S, Kim S K, et al. Localized deformation due to Portevin-Le Chatelier effect in 18Mn-0.6C TWIP austenitic steel [J]. ISIJ Int., 2007, 47: 1804
[13] Yang H K, Zhang Z J, Zhang Z F. Comparison of work hardening and deformation twinning evolution in Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steels [J]. Scr. Mater., 2013, 68: 992
[14] Dong F Y. Investigations on strength-ductility optimization, fracture and damage behaviors of high strength austenitic steels [D]. Beijing: University of Chinese Academy of Sciences, 2015
[14] 董福元. 奥氏体高强钢的强韧化与损伤断裂行为研究 [D]. 北京: 中国科学院大学, 2015
[15] An X H, Wu S D, Zhang Z F, et al. Enhanced strength-ductility synergy in nanostructured Cu and Cu-Al alloys processed by high-pressure torsion and subsequent annealing [J]. Scr. Mater., 2012, 66: 227
[16] Shao C W, Zhang P, Zhu Y K, et al. Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure [J]. Acta Mater., 2018, 145: 413
[17] Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
[18] Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J]. ISIJ Int., 2003, 43: 438
[19] Yang H K, Zhang Z J, Dong F Y, et al. Strain rate effects on tensile deformation behaviors for Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2014, A607: 551
[20] Qian L H, Guo P C, Meng J Y, et al. Unusual grain-size and strain-rate effects on the serrated flow in FeMnC twin-induced plasticity steels [J]. J. Mater. Sci., 2013, 48: 1669
[21] Yang H K, Tian Y Z, Zhang Z J, et al. Different strain rate sensitivities between Fe-22Mn-0.6C and Fe-30Mn-3Si-3Al twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2016, A655: 251
[22] Yang H K, Doquet V, Zhang Z F. Micro-scale measurements of plastic strain field, and local contributions of slip and twinning in TWIP steels during in situ tensile tests [J]. Mater. Sci. Eng., 2016, A672: 7
[23] Shao C W, Zhang P, Zhang Z J, et al. Butterfly effect in low-cycle fatigue: Importance of microscopic damage mechanism [J]. Scr. Mater., 2017, 140: 76
[24] Shao C W, Zhang P, Zhang Z J, et al. Forecasting low-cycle fatigue performance of twinning-induced plasticity steels: Difficulty and attempt [J]. Metall. Mater. Trans., 2017, 48A: 5833
[25] Niendorf T, Lotze C, Canadinc D, et al. The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel [J]. Mater. Sci. Eng., 2009, A499: 518
[26] Wang B, Zhang P, Duan Q Q, et al. High-cycle fatigue properties and damage mechanisms of pre-strained Fe-30Mn-0.9C twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2017, A679: 258
[27] Cornette D, Cugy P, Hildenbrand A, et al. Ultra high strength FeMn TWIP steels for automotive safety parts [J]. Rev. Met. Paris, 2005, 102: 905
[28] Hamada A S, Karjalainen L P, Puustinen J. Fatigue behavior of high-Mn TWIP steels [J]. Mater. Sci. Eng., 2009, A517: 68
[29] Wang B, Zhang P, Duan Q Q, et al. Synchronously improved fatigue strength and fatigue crack growth resistance in twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2018, A711: 533
[30] Niendorf T, Rubitschek F, Maier H J, et al. Fatigue crack growth-microstructure relationships in a high-manganese austenitic TWIP steel [J]. Mater. Sci. Eng., 2010, A527: 2412
[31] Hamada A S, Karjalainen L P. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels [J]. Mater. Sci. Eng., 2010, A527: 5715
[32] Shao C W, Wang Q, Zhang P, et al. Improving the high-cycle fatigue properties of twinning-induced plasticity steel by a novel surface treatment process [J]. Mater. Sci. Eng., 2019, A740-741: 28
[33] Shao C W, Zhang P, Wang X G, et al. High-cycle fatigue behavior of TWIP steel with graded grains: breaking the rule of mixture [J]. Mater. Res. Lett., 2019, 7: 26
[34] Guo P C, Qian L H, Meng J Y, et al. Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel [J]. Mater. Sci. Eng., 2013, A584: 133
[35] Ma P H, Qian L H, Meng J Y, et al. Fatigue crack growth behavior of a coarse- and a fine-grained high manganese austenitic twin-induced plasticity steel [J]. Mater. Sci. Eng., 2014, A605: 160
[36] Ma P H, Qian L H, Meng J Y, et al. Influence of Al on the fatigue crack growth behavior of Fe-22Mn-(3Al)-0.6C TWIP steels [J]. Mater. Sci. Eng., 2015, A645: 136
[37] Shao C W, Zhang P, Zhu Y K, et al. Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure [J]. Acta Mater., 2018, 145: 413
[1] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[2] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[3] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[4] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[5] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[6] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[7] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[12] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[13] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[14] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[15] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.