Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1161-1172    DOI: 10.3724/SP.J.1037.2010.00272
  论文 本期目录 | 过刊浏览 |
相场方法模拟AZ31镁合金的静态再结晶过程
高英俊1,2,3,罗志荣1,2,胡项英1,黄创高1
1. 广西大学物理科学与工程技术学院, 南宁 530004
2. 广西大学工程防灾与结构安全重点实验室, 南宁 530004
3. 中国科学院国际材料物理中心, 沈阳 11001
PHASE FIELD SIMULATION OF STATIC RECRYSTALLIZATION FOR AZ31 Mg ALLOY
GAO Yingjun 1,2,3, LUO Zhirong 1,2, HU Xiangying 1, HUANG Chuanggao 1
1. College of Physics Science and Engineering, Guangxi University, Nanning 530004
2. Key Laboratory of Disaster Prevention and Structural Safety, Guangxi University, Nanning 530004
3. International Center for Materials Physics, Chinese Academy of Science, Shenyang 110016
引用本文:

高英俊 罗志荣 胡项英 黄创高. 相场方法模拟AZ31镁合金的静态再结晶过程[J]. 金属学报, 2010, 46(10): 1161-1172.
, , , . PHASE FIELD SIMULATION OF STATIC RECRYSTALLIZATION FOR AZ31 Mg ALLOY[J]. Acta Metall Sin, 2010, 46(10): 1161-1172.

全文: PDF(4856 KB)  
摘要: 为了获得合金静态再结晶前的变形晶粒组织, 应用网格畸变模型与相场模型结合, 生成变形合金再结晶前的初始晶粒组织; 针对合金不同变形区域的特征和体系储存能分布不均匀的特点, 分别引入反映不同变形区域的储存能分布的权重因子和变形区域的特征状态因子, 构造多状态的非均匀自由能密度函数. 在此基础上,应用相场动力学方程模拟了AZ31镁合金的静态再结晶过程的微结构演化,系统地分析了再结晶转变动力学曲线和Avrami曲线, 以及储存能释放规律和再结晶晶粒尺度分布. 模拟得到的动力学规律符合JMAK理论, 所得的Avrami曲线可近似看成一条直线, 对应于真应变ε=0.25, 0.50, 0.75和1.00,该直线的平均斜率分别为2.45, 2.35, 2.19和2.15. Avrami时间指数随变形量的增加而降低. 变形程度大的合金, 储存能释放的速度快, 完成静态再结晶所需的时间短.基于本文提出的模型, 结合相场方法计算模拟所得的结果与已有的理论结果和实验结果符合良好.
关键词 相场模型 静态再结晶 塑性变形 微观组织 AZ31镁合金    
Abstract:In order to obtain the deformation grain structure for static recrystallization, an initial grain structure are produced by lattice deformation model; aiming at characteristics of different deformation regions and non–uniform distribution of the stored energy in deformed alloy, a multistate free energy (MSFE) function are proposed by introducing a weight factor for the stored energy and a characteristics state factor for different deformed regions. Based on these, the microstructure evolutions of static recrystallization for deformed Mg alloys are simulated by phase field model. The transformation dynamic curve of recrystallization, Avrami curve, and the regularity for stored energy releaing and distribution of grain size in recrytallization process are systematically analyzed. The dynamic regularity of statc recrystallization obtained by simulating is in good accord with the JMAK theory, and the Avramcurve by simulating can be regard as a linear with average slopes 2.45, 2.35, 2.19 and 2.15, respectively. The Avrami time index decreases with the true strain increasing. The stored energy releases faster, and the lasting time of static recrystallization process is shorter when the true strain is greater. Based on the established MSFE model, the simulation results here are in good agreement with the other theoretical results and experimntal results.
Key wordsphase field model    static recrystallization    plastic deformation    microstructure    AZ31 Mg alloy
收稿日期: 2010-06-08     
ZTFLH: 

TG115

 
基金资助:

国家自然科学基金项目50661001和50061001, 以及广西自然科学基金项目0991026, 0832029和0639004资助

作者简介: 高英俊, 男, 1962年生, 教授, 博士
[1] Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Mater Sci Eng, 2001; A302:37-45 [2] Hakamada M, Furuta T, Chino Y, Chen Y Q, Kusuda H, Mabuchi M, Mamoru Mabuchi. Life cycle inventory study on magnesium alloy substitution in vehicles[J]. Energy, 2007; 32(8):1352-1360 [3] Kancko T, Suzuki M. Automotive Applications of Magnesium Alloys[J]. Mater Sci Forum, 2003; 419-422: 67-72 [4] Agnew S R, Senn J W, andHorton J . Mg Sheet Metal Forming: Lessons Learned from Deep Drawing Li and Y Solid-Solution Alloys[J]. JOM, 2006; 58(5):62-69 [5] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena[M], Elsevier Science, Oxford, UK, 1995 [6] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J. Current issues in recrystallization: a review[J]. Mater Sci Eng, 1997; A238:219-274 [7] Liss K D, Garbe U, Li H J, Thomas S, Jonathan D A,Yan K. Adv Eng Mater, 2009; 11(8): 637-640 [8] Song X Y, Rettenmayr M. Modelling study on recrystallization,recovery and their temperature dependence in inhomogeneously deformed materials[J]. Mater Sci Eng, 2002; A332:153-160 [9] Walasek T A. Experimental verification of Monte Carlo recrystallization model[J]. J Mater Process Technol, 2004; 157-158:262-267 [10] Chun Y B, Semiatin S L, Hwang S K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium[J]. Acta Mater, 2006; 54(14):3673-3689 [11] Guan X J, Zhang J X and Sun S. Computer Simulation for Recrystallization of Deformed Metal[J]. Special Steel. 2004; 25(3): 34-37 (关小军, 张继详, 孙胜. 变形金属再结晶过程计算机模拟. 特殊钢, 2004,25(3):34-37) [12] Zhang J X. PhD Dissertation, Shandong University, Jinan, 2006 (张继详. 基于Monte Carlo方法的材料退火过程模拟模型及计算机仿真关键技术研究[D]. 山东大学博士学位论文,济南,2006 ) [13] Kazeminezhad M. On the modeling of the static recrystallization considering the initial grain size effects[J]. Mater Sci Eng, 2008; A486:202-207 [14] Lu Y, Zhang L W, Deng X H, Pei J B, Wang S, Zhang G L. Modeling Dynamic Recrystalization of Pure Copper Using Cellular Automaton Method[J]. Acta Metall Sin, 2008; 44(3):292-296 (卢瑀, 张立文, 邓小虎, 裴继斌, 王赛, 张国梁. 纯铜动态再结晶过程的元胞自动机模拟[J]. 金属学报, 2008; 44(3): 292-296) [15] Mukhopadhyay P, Loeck M, Gottstein G. A cellular operator model for the simulation of static recrystallization. Acta Mater, 2007,55(2):551-564 [16] Zheng C W, Xiao N M, Li D Z, Li Y Y. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: A cellular automaton modeling[J]. Comput Maters Sci, 2008; 44(2): 507-514. [17] Xiao N M, Zheng C W, Li D Z, Li Y Y. A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation technique[J]. Comput Maters Sci, 2008,41(3):366-374. [18] Guo J, Wang Y M, Li W, Wu D, Zhao X M. Cellular Automaton Simulation (I) in Static Recrystallization Process Microstructure Evolution and Dynamics Research[J]. Heavy Casting and Forging, 2009; 1(1) :20-24. (郭娟, 王艳梅, 李卫, 吴迪, 赵宪明. 静态再结晶过程的元胞自动机模拟(I)——微观组织演化和动力学研究[J]. 大型铸锻件, 2009; 1(1):20-24). [19] Chen L Q, Yang W. Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics[J]. Phys Rev B, 1994; 50(21):15752-15756 [20] Fan D,Chen L Q. Computer simulation of grain growth using a continuum field model[J]. Acta Mater,1997; 45(2): 611-622 [21] Moelans N, Blanpain B, Wollants P. Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles[J]. Acta Mater, 2006; 54(4):1175-1184. [22] Suwa Y, Saito Y. Phase field simulation of grain growth containing finely dispersed second-phase particle[J]. Scr Mater, 2006; 55(4): 407-410 [23] Gao Y J, Zhang H L, Jin X, Huang C G, Luo Z R. Phase-field simulation of two-phase grain growth with hard particles[J]. Acta Metall Sin, 2009; 45(10):1190-1198 (高英俊, 张海林, 金星, 黄创高, 罗志荣. 相场方法研究硬质粒子钉扎的两相晶粒长大过程[J]. 金属学报, 2009; 45(10): 1190-1198) [24] Vedantam S, Mallick A. Phase-field theory of grain growth in the presence of mobile second-phase particles[J]. Acta Mater, 2010; 58 (1):272–281 [25] Suwa Y, Saito Y, Onodera H. Phase field simulation of stored energy driven interface migration at a recrystallization front[J]. Mater Sci Eng, 2007; A457:132-138 [26] Suwa Y, Saito Y, Onodera H. Phase-field simulation of recrystallization based on the unified subgrain growth theory[J]. Comput Maters Sci, 2008; 44(2): 286-295 [27] Takaki T, Yamanaka A, Higa Y, Tomita Y. Phase-field model during static recrystallization based on crystal-plasticity theory[J]. J Computer-Aided Mater. Des, 2007; 14: 75-84 [28] Wang M T, Zong B Y, Wang G. Grain growth in AZ31 Mg alloy during recrystallization at different temperatures by phase field simulation. Comput Maters Sci, 2009; 45(2): 217-222 [29] Takaki T, Hirouchi T, Hisakuni Y, Yamanaka A and Tomita Y. J Crystal Growth, 2008; 310: 2248 [30] Li Y L and Chen L Q. Appl Phys Lett, 2006; 88: 072905 [31] Wang Y U. Acta Mater, 2006; 54: 953 [32] Li W, Gao L. Scr Mater, 2001; 44: 2269 [33] Guyer J E, Boittinger W J. Phys Rev, 2004; 69E: 021603 [34] Ramanarayan H, Abinandanan T A. Acta Mater, 2004; 52: 921 [35] Sreekala S, Haataja M. Phys Rev, 2007; 76B: 094109 [36] Cahn R W, Materials Science and Technology, Vol.15. Beijing: Science Press, 1999: 360 (R W 卡恩 主编. 材料科学与技术丛书(第15卷),北京: 科学出版社,1999: 360) [37] Oono Y, Pori S. Phys Rev Lett, 1987; 58(8): 836 [38] Zheng C W, Lan Y J, Xiao N M, Li D Z, Li Y Y. Acta Metall Sin, 2006; 42(5):474-480 (郑成武,兰永军,肖纳敏,李殿中,李依依. 热变形低碳钢中奥氏体静态再结晶模拟[J]. 金属学报, 2006; 42(5): 474-480) [39] Ye W P, Gell R L, Saindrenan G. A study of the recrystallization of an IF steel by kinetics models. Mater Sci Eng, 2002; A332: 41-47 [40] Liu R C, Wang L Y, Gu L G, Huang G S. Light Alloy Fabric Technol, 2004; 32: 22-25 (刘饶川,汪凌云,辜蕾钢,黄光胜. 轻合金加工技术,2004; 32: 22-25)
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[9] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[14] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[15] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.