Please wait a minute...
金属学报  2020, Vol. 56 Issue (5): 683-692    DOI: 10.11900/0412.1961.2019.00278
  本期目录 | 过刊浏览 |
选区激光熔化316L不锈钢的拉伸性能
余晨帆1, 赵聪聪1, 张哲峰2, 刘伟1()
1.清华大学材料学院 北京 100084
2.中国科学院金属研究所 沈阳 110016
Tensile Properties of Selective Laser Melted 316L Stainless Steel
YU Chenfan1, ZHAO Congcong1, ZHANG Zhefeng2, LIU Wei1()
1.School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(3487 KB)   HTML
摘要: 

对选区激光熔化(selective laser melting,SLM) 316L不锈钢的拉伸性能及断裂机制进行了研究,并对拉伸断裂后的试样进行显微组织表征与分析,探究了拉伸变形过程中微观组织的演化规律。结果表明:采用选区激光熔化技术制备的316L不锈钢具有较好的强塑性匹配,其中晶粒内部纳米尺度胞状结构有助于强度的提升;其拉伸性能明显优于传统手段制备的316L不锈钢。选区激光熔化316L不锈钢在拉伸过程中奥氏体晶粒内部产生形变孪晶,并且形变孪晶的出现存在取向相关,在取向接近<001>的晶粒中不易出现,而在取向接近<110>-<111>的晶粒中较易出现。

关键词 选区激光熔化316L不锈钢拉伸性能形变孪晶    
Abstract

Selective laser melting (SLM), as the most common additive manufacturing (AM) method, is capable of manufacturing metallic components with complex shape layer by layer. Compared with conventional manufacturing technologies such as casting or forging, the SLM technology has the advantages of high degree accuracy, high material utilization rate and environmentally friendly, and has attracted great attention in the fields of aerospace, nuclear power and medicine. The 316L austenitic stainless steel is widely used in the industrial field because of the excellent corrosion resistance and plasticity. It is also one of the commonly used material systems for SLM. In this work, the tensile properties and fracture mechanism of 316L stainless steel fabricated via SLM technology were investigated. The microstructure of the SLMed 316L specimens after tensile fracture was characterized and analyzed. The results show that the SLMed 316L stainless steel has a relatively desirable combination of strength and ductility, and its tensile performance is obviously better than that of 316L stainless steel prepared by traditional methods. The nanometer-scale cell structure inside the grain contributes to the improvement of strength. Deformation twins were observed in the SLMed 316L stainless steel after tensile test. The appearance of twins is oriented-dependent, and it is easy to occur in the grain with the direction near <110>-<111>.

Key wordsselective laser melting    316L stainless steel    tensile property    deformation twinning
收稿日期: 2019-08-19     
ZTFLH:  TG142  
基金资助:国家磁约束核聚变能发展研究专项项目(2014GB117000)
通讯作者: 刘伟     E-mail: liuw_tsinghua@163.com
Corresponding author: LIU Wei     E-mail: liuw_tsinghua@163.com
作者简介: 余晨帆,男,1990年生,博士生

引用本文:

余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
Chenfan YU, Congcong ZHAO, Zhefeng ZHANG, Wei LIU. Tensile Properties of Selective Laser Melted 316L Stainless Steel. Acta Metall Sin, 2020, 56(5): 683-692.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00278      或      https://www.ams.org.cn/CN/Y2020/V56/I5/683

图1  拉伸试样尺寸示意图
图2  316L不锈钢粉体形貌的SEM像
图3  选区激光熔化成形316L不锈钢中的胞状结构
图4  选区激光熔化316L不锈钢拉伸工程应力-应变曲线

Sample

Rm

MPa

σ0.2

MPa

δ

%

UT

106 J·m-3

Horizontally built665.955053.2337.8
Vertically built575.452071.9431.2
表1  选区激光熔化316L不锈钢不同增材方向的拉伸性能
图5  选区激光熔化成形316L不锈钢与传统制备方式成形316L不锈钢拉伸性能[22,23,24,25,26,27,28]比较
图6  选区激光熔化成形316L不锈钢不同方向增材试样拉伸断口形貌的SEM像
图7  选区激光熔化316L不锈钢不同方向增材试样拉伸断裂后微观组织的EBSD分析
图8  选区激光熔化316L不锈钢不同方向增材试样拉伸断裂前后的局部取向差分布
图9  选区激光熔化316L不锈钢水平方向增材试样拉伸变形后形变孪晶形貌的EBSD分析及取向差角
图10  水平方向增材316L不锈钢拉伸断裂后晶粒的取向分布图
1 Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390
2 Gao P, Wei K W, Yu H C, et al. Influence of layer thickness on microstructure and mechanical properties of selective laser melted Ti-5Al-2.5Sn alloy [J]. Acta Metall. Sin., 2018, 54: 999
2 高 飘, 魏恺文, 喻寒琛等. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律 [J]. 金属学报, 2018, 54: 999
3 Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
3 张文奇, 朱海红, 胡志恒等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918
4 Tomus D, Rometsch P A, Heilmaier M, et al. Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting [J]. Addit. Manuf., 2017, 16: 65
pmid: 15414158
5 Zhang Y J, Wang H B, Song X Y, et al. Preparation and performance of spherical Ni powder for SLM processing [J]. Acta Metall. Sin., 2018, 54: 1833
5 张亚娟, 王海滨, 宋晓艳等. SLM球形Ni粉的制备与打印工艺性能 [J]. 金属学报, 2018, 54: 1833
doi: 10.11900/0412.1961.2018.00153
6 Zhou X, Li K L, Zhang D D, et al. Textures formed in a CoCrMo alloy by selective laser melting [J]. J. Alloys Compd., 2015, 631: 153
doi: 10.1016/j.dental.2014.02.008 pmid: 24598762
7 Wang D Z, Yu C F, Ma J, et al. Densification and crack suppression in selective laser melting of pure molybdenum [J]. Mater. Des., 2017, 129: 44
8 Zhou X, Liu X H, Zhang D D, et al. Balling phenomena in selective laser melted tungsten [J]. J. Mater. Process. Technol., 2015, 222: 33
9 Krakhmalev P, Yadroitsava I, Fredriksson G, et al. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels [J]. Mater. Des., 2015, 87: 380
10 Sun Y, Hebert R J, Aindow M. Non-metallic inclusions in 17-4PH stainless steel parts produced by selective laser melting [J]. Mater. Des., 2018, 140: 153
doi: 10.1196/annals.1415.006 pmid: 17496063
11 Lai C L, Tsay L W, Chen C. Effect of microstructure on hydrogen embrittlement of various stainless steels [J]. Mater. Sci. Eng., 2013, A584: 14
doi: 10.3390/ma13071643 pmid: 32252282
12 Guo S, Han E H, Wang H T, et al. Life prediction for stress corrosion behavior of 316L stainless steel elbow of nuclear power plant [J]. Acta Metall. Sin., 2017, 53: 455
12 郭 舒, 韩恩厚, 王海涛等. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测 [J]. 金属学报, 2017, 53: 455
13 Casati R, Lemke J, Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting [J]. J. Mater. Sci. Technol., 2016, 32: 738
14 Kong D C, Dong C F, Ni X Q, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes [J]. J. Mater. Sci. Technol., 2019, 35: 1499
15 Scipioni Bertoli U, MacDonald B E, Schoenung J M. Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel [J]. Mater. Sci. Eng., 2019, A739: 109
16 Shamsujjoha M, Agnew S R, Fitz-Gerald J M, et al. High strength and ductility of additively manufactured 316L stainless steel explained [J]. Metall. Mater. Trans., 2018, 49A: 3011
17 Suryawanshi J, Prashanth K G, Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel [J]. Mater. Sci. Eng., 2017, A696: 113
18 Salman O O, Gammer C, Chaubey A K, et al. Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting [J]. Mater. Sci. Eng., 2019, A748: 205
19 Niendorf T, Leuders S, Riemer A, et al. Highly anisotropic steel processed by selective laser melting [J]. Metall. Mater. Trans., 2013, 44B: 794
20 Liu L F, Ding Q Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength-ductility trade-off [J]. Mater. Today, 2018, 21: 354
doi: 10.1016/j.mattod.2017.11.004
21 Mullins W W, Sekerka R F. Stability of a planar interface during solidification of a dilute binary alloy [J]. J. Appl. Phys., 1964, 35: 444
22 Yao T Z, Xu T H, Wang D H. Effects of yield ratio rising on use security of pipeline steel [J]. Mater. Mech. Eng., 2012, 36(8): 62
22 姚婷珍, 许天旱. 王党会. 屈强比升高对管线钢使用安全性的影响 [J]. 机械工程材料, 2012, 36(8): 62
23 Lu L, Li Z B, Bi Z Y, et al. Relationship between tension toughness and fracture toughness of low alloy steel [J]. J. Iron Steel Res., 2014, 26(6): 67
23 芦 琳, 李周波, 毕宗岳等. 低碳低合金钢的静力韧度与断裂韧度 [J]. 钢铁研究学报, 2014, 26(6): 67
24 Gu D D, Chen H Y. Selective laser melting of high strength and toughness stainless steel parts: The roles of laser hatch style and part placement strategy [J]. Mater. Sci. Eng., 2018, A725: 419
25 Roland T, Retraint D, Lu K, et al. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability [J]. Mater. Sci. Eng., 2007, A445-446: 281
26 Brass A M, Chêne J. Hydrogen uptake in 316L stainless steel: Consequences on the tensile properties [J]. Corros. Sci., 2006, 48: 3222
27 Chen X H, Lu J, Lu L, et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel [J]. Scr. Mater., 2005, 52: 1039
28 Hong S G, Lee S B. The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel: Influence of dynamic strain aging [J]. Int. J. Fatigue, 2004, 26: 899
29 Maloy S A, James M R, Willcutt G, et al. The mechanical properties of 316L/304L stainless steels, Alloy 718 and Mod 9Cr-1Mo after irradiation in a spallation environment [J]. J. Nucl. Mater., 2001, 296: 119
30 Panda S S, Singh V, Upadhyaya A, et al. Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and microwave furnaces [J]. Scr. Mater., 2006, 54: 2179
doi: 10.1016/j.scriptamat.2006.02.034
31 Stinville J C, Cormier J, Templier C, et al. Monotonic mechanical properties of plasma nitrided 316L polycrystalline austenitic stainless steel: Mechanical behaviour of the nitrided layer and impact of nitriding residual stresses [J]. Mater. Sci. Eng., 2014, A605: 51
32 Zhang M, Sun C N, Zhang X, et al. Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters [J]. Mater. Sci. Eng., 2017, A703: 251
33 Matthews M J, Guss G, Khairallah S A, et al. Denudation of metal powder layers in laser powder bed fusion processes [J]. Acta Mater., 2016, 114: 33
34 Khairallah S A, Anderson A T, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones [J]. Acta Mater., 2016, 108: 36
35 Qiu C L, Panwisawas C, Ward M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting [J]. Acta Mater., 2015, 96: 72
36 Gutierrez-Urrutia I, Zaefferer S, Raabe D. The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel [J]. Mater. Sci. Eng., 2010, A527: 3552
37 Sun S J, Tian Y Z, Lin H R, et al. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement [J]. Mater. Sci. Eng., 2018, A712: 603
38 Li D D, Qian L H, Liu S, et al. Effect of manganese content on tensile deformation behavior of Fe-Mn-C TWIP steels [J]. Acta Metall. Sin., 2018, 54: 1777
38 李冬冬, 钱立和, 刘 帅等. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响 [J]. 金属学报, 2018, 54: 1777
39 de Campos M F, Loureiro S A, Rodrigues D, et al. Estimative of the stacking fault energy for a FeNi(50/50) alloy and a 316L stainless steel [J]. Mater. Sci. Forum, 2008, 591-593: 3
40 Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[3] 柯林达,殷杰,朱海红,彭刚勇,孙京丽,陈昌棚,王国庆,李中权,曾晓雁. 钛合金薄壁件选区激光熔化应力演变的数值模拟[J]. 金属学报, 2020, 56(3): 374-384.
[4] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[5] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[6] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[7] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[8] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[9] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[10] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
[11] 李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.
[12] 高飘, 魏恺文, 喻寒琛, 杨晶晶, 王泽敏, 曾晓雁. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律[J]. 金属学报, 2018, 54(7): 999-1009.
[13] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[14] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[15] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.