Please wait a minute...
金属学报  2010, Vol. 46 Issue (7): 844-849    DOI: 10.3724/SP.J.1037.2010.00037
  论文 本期目录 | 过刊浏览 |
HR3C钢高温时效过程中的析出相
方园园1), 赵杰1),  李晓娜1, 2)
1) 大连理工大学材料科学与工程学院, 大连 116085
2) 大连理工大学三束材料改性教育部重点实验室, 大连 116085
PRECIPITATES IN HR3C STEEL AGED AT HIGH TEMPERATURE
FANG Yuanyuan1),   ZHAO Jie1),  LI Xiaona1, 2)
1) School of Material Science and Engineering, Dalian University of Technology, Dalian 116085
2) Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education Dalian University of Technology, Dalian 116085
引用本文:

方园园 赵杰 李晓娜. HR3C钢高温时效过程中的析出相[J]. 金属学报, 2010, 46(7): 844-849.
, , . PRECIPITATES IN HR3C STEEL AGED AT HIGH TEMPERATURE[J]. Acta Metall Sin, 2010, 46(7): 844-849.

全文: PDF(1062 KB)  
摘要: 

本文研究了HR3C钢在750℃下时效500 h前后的显微组织变化和第二相的种类.研究结果表明, 时效后HR3C钢中的析出物主要为形状各异的M23C6和NbCrN,其中M23C6在晶界和晶内均有析出, NbCrN以极其细微的尺寸大量弥散分布于晶内; 时效过程中弥散析出的M23C6和极其细微的NbCrN提高了HR3C钢的硬度. 晶内及晶界析出的M23C6晶格常数均为基体的3倍, 并与基体保持完全共格的关系, 晶界处部分 M23C6转变成了高Cr的$\sigma$相.

关键词 HR3C钢 时效析出显微组织    
Abstract

HR3C steel (Fe-25Cr-20Ni-Nb-N) is a new type of austenitic heat-resistant steel which has been widely used for super-heater and re-heater tubes in the ultra supercritical pressure (USC) boiler. The mechanical properties of HR3C steel were dependent on the stability of the microstructure, particularly the large amount of precipitates formed during service. This work was focused on the change of microstructure and the precipitations of HR3C steel after thermal aging for 500 h at 750℃. The results indicated that the major precipitates were variform M23C6 carbides and NbCrN nitrides. M23C6 carbides precipitated on grain boundaries and in intragranular. Fine and dispersed NbCrN nitrides were found to precipitate in intragranular. The hardness of HR3C steel had been improved through dispersed M23C6 and fine NbCrN precipitates after thermal aging for 500 h at\linebreak 750℃. All the M23C6 carbides, with lattice parameter of three times of the austenite matrix,  grown in a cube to cube orientation relationship with the matrix. Some of the M23C6 carbides which precipitated on grain boundaries were transformed into σ phase.

Key wordsHR3C steel    thermal aging    precipitation    microstructure
收稿日期: 2010-01-19     
基金资助:

国家高技术研究发展计划资助项目2006AA04Z421

作者简介: 方园园, 女, 1984年生, 硕士生

[1] Yang F, Zhang Y L, Ren Y N, LiWM. New Heat–resistant Steels Welding. Beijing: China Electric Power Press, 2006: 143
(杨富, 章应霖, 任永宁, 李为民. 新型耐热钢焊接. 北京: 中国电力出版社, 2006: 143)
[2] Masuyama F. ISIJ Int, 2001; 41: 612
[3] Park I, Masuyama F, Endo T. Key Eng Mater, 2000; 171–174: 445
[4] Iseda A, Okada H, Semba H, Igarashi M. Energy Mater, 2007; 2(4): 199
[5] Komai N, Igarashi M, Minami Y, Mimura H, Masuyama F, Prager M, Boyles P R. 2007 Proc ASME Pressure Vessels and Piping Conference–8th International Conference on Creep and Fatigue at Elevated Temperatures–CREEP, New York: ASME, 2008: 2039
[6] Igarashi M, In: Yagi K, Merkling G, Kern T U, Irie H, Warlimont W eds., Landolt–Bornstein: Numerical Data and Functional Relationships in Science and Technology, Group VIII: Advanced Materials and Technologies, Berlin: Springer–Verlag, 2004; 2: 292
[7] Saito N, Komai N. 2007 Proc ASME Pressure Vessels and Piping Conference–8th International Conference on Creep and Fatigue at Elevated Temperatures–CREEP, New York: ASME, 2008: 211
[8] Chen T H, Yang J R. Mater Sci Eng, 2001; A311: 28
[9] Zhang Y W, Li D J, Wang F G. Corros Sci Prot Technol, 2002; 14: 202
(张扬伟, 李德俊, 王富岗. 腐蚀科学与防护技术, 2002; 14: 202)
[10] Sourmail T, Bhadeshia H K D H. Metall Mater Trans, 2005; 36A: 23
[11] Okada H, Igarashi M, Yamamoto S, Miyahara O, Iseda A, Komai N, Masuyama F. 2007 Proc ASME Pressure Vessels and Piping Conference–8th International Conference on Creep and Fatigue at Elevated Temperatures–CREEP, New York: ASME, 2008: 181
[12] Giordani E J, Jorge Jr A M, Balancin O. Scr Mater, 2006; 55: 743
[13] MatayaMC, Perkins C A, Thompson SW,Matlock D K. Metall Mater Trans, 1996; 27A: 1251

[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[8] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[9] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[10] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[11] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[12] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[13] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[14] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[15] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.