Please wait a minute...
金属学报  2025, Vol. 61 Issue (9): 1387-1402    DOI: 10.11900/0412.1961.2023.00469
  研究论文 本期目录 | 过刊浏览 |
斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为
吴志勇1, 邵徽凡1, 蔡长春1, 曾敏1, 王振军1(), 王艳丽2, 陈雷2, 熊博文1
1 南昌航空大学 航空制造工程学院 南昌 330063
2 中航工业江西洪都航空工业集团有限责任公司 南昌 330096
Tensile and Fracture Behaviors of Stitched Twill Carbon Fabric Structure Reinforced Aluminum Matrix Composites at Elevated Temperature
WU Zhiyong1, SHAO Huifan1, CAI Changchun1, ZENG Min1, WANG Zhenjun1(), WANG Yanli2, CHEN Lei2, XIONG Bowen1
1 School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 AVIC Jiangxi Hongdu Aviation Industry Group Co. Ltd., Nanchang 330096, China
引用本文:

吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
Zhiyong WU, Huifan SHAO, Changchun CAI, Min ZENG, Zhenjun WANG, Yanli WANG, Lei CHEN, Bowen XIONG. Tensile and Fracture Behaviors of Stitched Twill Carbon Fabric Structure Reinforced Aluminum Matrix Composites at Elevated Temperature[J]. Acta Metall Sin, 2025, 61(9): 1387-1402.

全文: PDF(4144 KB)   HTML
摘要: 

三维织物增强铝基复合材料具有高比强度、高比模量以及优良的耐高温和抗冲击性能,是制造航空航天耐热结构的理想材料,目前尚缺乏其高温环境下力学特性与失效机制的系统性研究。本工作研究了高温(400 ℃)环境下斜纹碳布缝合织物结构增强铝基复合材料的准静态拉伸力学行为与失效机理,并根据其织物结构和纱线微观组织特征建立了基于微观和细观尺度代表性单胞的细观力学有限元模型;采用数值模拟与实验结合的方法分析了复合材料在高温拉伸过程中的宏观力学响应、组元结构损伤演化与渐进失效行为。结果表明,复合材料的高温拉伸模量、强度与断裂应变的实验均值分别为103.20 GPa、621.60 MPa和0.819%,数值模拟得到拉伸应力-应变曲线与复合材料高温拉伸实验曲线总体上吻合较好。高温环境下复合材料内部存在复杂的热应力,基体合金和纱线分别处于压应力和拉应力状态。在拉伸初期阶段,复合材料中缝合纱失效、经/纬纱搭接处基体损伤和经纱局部失效,但表现出了线弹性力学响应。随着拉伸载荷增大,基体的损伤程度加重且沿织物斜纹方向出现严重的基体损伤区和纬纱开裂区,导致随应变增加拉伸应力的增长速率减缓。拉伸变形后期产生显著且互相重叠的基体和纱线失效带,经纱的轴向断裂使得复合材料失去承载能力并且拉伸应力急剧下降。高温拉伸断口中缝合纱和纬纱的断口较为平整,而经纱的断裂拔出长度不一,且呈现大量纤维断裂拔出并伴随基体合金撕裂的微观形貌特征。

关键词 斜纹碳布缝合织物铝基复合材料细观力学损伤演化高温力学性能失效机制    
Abstract

Three-dimensional fabric-reinforced aluminum matrix composites with high specific strength and modulus, excellent high-temperature resistance, and impact resistance are ideal structural materials for fabricating heat-resistant components in aeronautics and aerospace engineering. However, few studies have explored the mechanical properties and fracture behaviors of these composites in high-temperature environments. This study aims to investigate the quasi-static tensile behaviors and failure mechanisms of a stitched twill carbon fabric-reinforced aluminum matrix composite at an elevated temperature of 400 oC. Based on the fabric structure and yarn microstructure, a mesoscle finite element model was established using representative unit cells at the microsale and mesoscale. The macroscopic mechanical response, damage evolution, and failure mechanism of the composite during the tensile test at an elevated temperature (400 oC) were analyzed through numerical simulations and experiments. Results show that the tested tensile modulus, strength, and fracture strain at 400 oC are 103.20 GPa, 621.60 MPa, and 0.819%, respectively. The calculated tensile stress-strain curve aligns with the experimental curves obtained from high-temperature tensile tests. The composites experience complex thermal stress at elevated temperatures, with the matrix pocket under compressive stress and the yarn structure under tensile stress. In the initial tensile stage, the matrix between interlaced weft/warp yarns is damaged, and local failure zones appear in the stitch and warp yarns; however, the composite exhibits a linear elastic response. As the tensile load increases, the degree of damage in the matrix pocket gradually increases, leading to the emergence of serious matrix damage zones and weft yarn cracking along the twill direction of the fabric. Consequently, the growth rate of tensile stress in the tensile curve declines with increasing tensile strain. In the final stage, the matrix failure zone and yarn fracture zone overlap. The axial fracture of warp yarn, in particular, leads to catastrophic fracture of the composite, resulting in a dramatic drop of the tensile stress. The stitch and weft yarns in the composites exhibit a flat fracture morphology, whereas the fractured warp yarn presents rugged fracture surfaces. A mass of fiber pull-out is observed on the microscopic fracture surface of a warp yarn, accompanied by matrix alloy tearing characteristics.

Key wordsstitched twill carbon fabric structure    aluminum matrix composites    micromechanics    damage evolution    high temperature mechanical property    failure mechanism
收稿日期: 2023-12-01     
ZTFLH:  TG335.85  
基金资助:国家自然科学基金项目(52165018);江西省主要学科学术和技术带头人培养计划项目(20225BCJ22002)
通讯作者: 王振军,wangzhj@nchu.edu.cn,主要从事金属基复合材料设计制备及其结构强度理论研究
Corresponding author: WANG Zhenjun, professor, Tel: 18970951974, E-mail: wangzhj@nchu.edu.cn
作者简介: 吴志勇,男,1998年生,硕士
图1  斜纹碳布缝合织物结构示意图和表面形貌及铝基复合材料表面形貌
图2  铝基复合材料与铝合金高温拉伸试样尺寸示意图
图3  铝基复合材料中纱线截面形态与显微结构
图4  铝基复合材料细观尺度结构模型建模过程示意图
图5  铝基复合材料细观尺度代表性体积单元(RVE)模型及其离散化处理,及周期性边界条件
图6  基体铝合金的拉伸工程应力-应变曲线
Temperature / oCEm / GPaε¯0pl / %ε¯fpl / %α / (10-6 K-1)[34]
2570.480.271.222.7
10045.650.431.525.4
20033.140.742.026.5
30024.222.203.227.8
40012.893.204.529.9
表1  基体铝合金的弹-塑性力学性能参数和热膨胀系数[34]
图7  hcp结构纤维分布示意图、微观尺度RVE模型及其离散化处理
ParameterSymbolValueUnitRef.
Axial tensile strengthXtf4400MPa[41]
Axial compressive strengthXcf2250MPa[33]
Axial shear strengthS12f340MPa[33]
Axial elastic modulusE11f377GPa[41]
Axial shear modulusG12f8.9GPa[39]
Axial Poisson's ratioν12f0.26[33]
Axial thermal expansion coefficientα11f-0.8310-6 K-1[39]
Transverse tensile strengthYtf175MPa[40]
Transverse compressive strengthYcf590MPa[40]
Transverse shear strengthS23f240MPa[40]
Transverse elastic modulusE22f19GPa[39]
Transverse shear modulusG23f7.3GPa[40]
Transverse Poisson's ratioν23f0.3[33]
Transverse thermal expansion coefficientα22f8.010-6 K-1[39]
表2  纤维材料的弹性常数、极限强度及热膨胀系数[33,39~41]
图8  不同载荷条件下纱线高温(400 ℃)力学行为的微观RVE有限元计算结果
ParameterSymbolValueUnit
Axial tensile modulusE11t262.8GPa
Axial compression modulusE11c259.4GPa
Axial shear modulusG12s8.9GPa
Transverse tensile modulusE22t19.8GPa
Transverse compression modulusE22c20.3GPa
Transverse shear modulusG23s7.2GPa
Axial tensile strengthX11t3027.1MPa
Axial compression strengthX11c1577.4MPa
Axial shear strengthX12s39.9MPa
Transverse tensile strengthX22t83.6MPa
Transverse compression strengthX22c86.1MPa
Transverse shear strengthX23s38.9MPa
表3  纱线的高温弹性常数与强度性能参数
Temperature / oCα11 / (10-6 K-1)α22 / (10-6 K-1)E11 / GPaE22 / GPaG12 / GPaG23 / GPaν12ν23
253.119.94283.2823.9811.039.340.280.41
1003.0310.28282.1123.5010.898.91
2002.9410.39275.9922.8010.548.68
3002.8210.53269.9622.199.698.06
4002.6810.78268.1121.869.427.86
表4  纱线在不同温度下的线性热膨胀系数和弹性常数
图9  细观尺度单胞有限元模型中纱线的局部材料坐标轴示意图
图10  高温(400 ℃)下铝基复合材料的热应力分布状态
图11  400 ℃下铝基复合材料的拉伸应力-应变实验曲线与预测曲线

Data type

Elastic

modulus

GPa

Ultimate

strength

MPa

Elongation

%

Calculation error / %7.171.943.79
Experimental value103.20621.600.819
Numerical value110.60633.640.850
表5  铝基复合材料高温拉伸力学性能的实验与计算结果
图12  拉伸变形初期复合材料组元的结构损伤与失效状态
图13  拉伸变形中期复合材料组元的结构损伤与失效状态
图14  拉伸变形末期复合材料组元的结构损伤与失效状态
图15  400 ℃拉伸时铝基复合材料的断口形貌
图16  高温拉伸断裂时纱线结构失效模型
[1] Miracle D B. Metal matrix composites—From science to technological significance [J]. Compos. Sci. Technol., 2005, 65: 2526
[2] Wenzelburger M, Silber M, Gadow R. Manufacturing of light metal matrix composites by combined thermal spray and semisolid forming process—Summary of the current state of technology [J]. Key Eng. Mater., 2010, 425: 217
[3] Wang Y, Xu X, Zhao W X, et al. Damage accumulation during high temperature fatigue of Ti/SiCf metal matrix composites under different stress amplitudes [J]. Acta Mater., 2021, 213: 116976
[4] Ma Z Y, Xiao B L, Zhang J F, et al. Overview of research and development for aluminum matrix composites driven by aerospace equipment demand [J]. Acta Metall. Sin., 2023, 59: 457
doi: 10.11900/0412.1961.2022.00605
[4] 马宗义, 肖伯律, 张峻凡 等. 航天装备牵引下的铝基复合材料研究进展与展望 [J]. 金属学报, 2023, 59: 457
doi: 10.11900/0412.1961.2022.00605
[5] Kim B R, Lee H K. Elastoplastic modeling of circular fiber-reinforced ductile matrix composites considering a finite RVE [J]. Int. J. Solids Struct., 2010, 47: 827
[6] Chen Y L, Ghosh S. Micromechanical analysis of strain rate-dependent deformation and failure in composite microstructures under dynamic loading conditions [J]. Int. J. Plast., 2012, 32-33: 218
[7] Giugliano D, Barbera D, Chen H F. Effect of fiber cross section geometry on cyclic plastic behavior of continuous fiber reinforced aluminum matrix composites [J]. Eur. J. Mech., 2017, 61A: 35
[8] Giugliano D, Chen H F. Micromechanical modeling on cyclic plastic behavior of unidirectional fiber reinforced aluminum matrix composites [J]. Eur. J. Mech., 2016, 59A: 155
[9] Zhu X J, Chen X F, Zhai Z, et al. Micromechanical analysis of interfacial debonding in metal matrix composites subjected to off-axis loading [J]. Fiber Compos., 2013, 3: 53
[10] Behera N, Murari Pandey K M, Deoghare A B, et al. Modeling & simulation of interface stability in metal matrix composites subjected to off-axis loading using cohesive zone model under elevated temperature: A review [J]. Mater. Today Proc., 2018, 5: 20085
[11] Eggleston M R, Krempl E. The transverse creep and tensile behaviour of SCS-6/Ti-6Al-4V metal matrix composites at 482 oC [J]. Mech. Compos. Mater. Struct., 1994, 1: 53
[12] Aghdam M M, Morsali S R, Hosseini S M A, et al. Mechanical behavior of unidirectional SiC/Ti composites subjected to off-axis loading at elevated temperatures [J]. Mater. Sci. Eng., 2017, A688: 244
[13] Aghdam M M, Morsali S R. Damage initiation and collapse behavior of unidirectional metal matrix composites at elevated temperatures [J]. Comput. Mater. Sci., 2013, 79: 402
[14] Vassel A. Continuous fibre reinforced titanium and aluminium composites: A comparison [J]. Mater. Sci. Eng., 1999, A263: 305
[15] Zhang Y H, Yan L L, Miao M H, et al. Microstructure and mechanical properties of z-pinned carbon fiber reinforced aluminum alloy composites [J]. Mater. Des., 2015, 86: 872
[16] Zhang Y, Wu G, Chen G, et al. Microstructure and mechanical properties of 2D woven Grf/Al composite [J]. Trans. Noferrous Met. Soc. China, 2006, 16(spec. issue3) : S1509
[17] Ma Y Q, Qi L H, Zheng W Q, et al. Effect of specific pressure on fabrication of 2D-Cf/Al composite by vacuum and pressure infiltration [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1915
[18] Zhou J M, Zheng W Q, Qi L H, et al. Investigation on compressive failure mechanism of 2D cross-ply Cf/Al composites by extrusion directly following vacuum pressure infiltration process [J]. J. Shanghai Univ. (Nat. Sci.), 2014, 20: 75
[18] 周计明, 郑武强, 齐乐华 等. 真空吸渗挤压二维正交铺层复合材料压缩失效机制 [J]. 上海大学学报(自然科学版), 2014, 20: 75
[19] Hufenbach W, Gude M, Czulak A. Development of textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods [J]. J. Achiev. Mater. Manuf. Eng., 2009, 2: 177
[20] Yang Q R, Liu J X, Li S K, et al. Fabrication and mechanical properties of Cu-coated woven carbon fibers reinforced aluminum alloy composite [J]. Mater. Des., 2014, 57: 442
[21] Yang Q R, Liu J X, Li S K, et al. Bending mechanical property and failure mechanisms of woven carbon fiber-reinforced aluminum alloy composite [J]. Rare Met., 2016, 35: 915
[22] Zhang J J, Liu S C, Zhang Y X, et al. Fabrication of woven carbon fibers reinforced Al-Mg (95-5wt%) matrix composites by an electromagnetic casting process [J]. J. Mater. Process. Technol., 2015, 226: 78
[23] Zhang J J, Liu S C, Lu Y P, et al. Semisolid-rolling and annealing process of woven carbon fibers reinforced Al-matrix composites [J]. J. Mater. Sci. Technol., 2017, 33: 623
doi: 10.1016/j.jmst.2017.01.002
[24] Lee S K, Byun J H, Hong S H. Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites [J]. Mater. Sci. Eng., 2003, A347: 346
[25] McWilliams B, Dibelka J, Yen C F. Multi scale modeling and characterization of inelastic deformation mechanisms in continuous fiber and 2D woven fabric reinforced metal matrix composites [J]. Mater. Sci. Eng., 2014, A618: 142
[26] Sheng G F, Wang Z J, Liu F H, et al. Quasi-static tensile behavior and failure mechanism of laminated puncture CF/Al composites [J]. Acta Aeronaut. Astronaut. Sin., 2021, 42(12): 345
[26] 沈高峰, 王振军, 刘丰华 等. 叠层穿刺CF/Al复合材料准静态拉伸力学行为与失效机制 [J]. 航空学报, 2021, 42(12): 345
[27] Feng J P, Yu H, Xu Z F, et al. Bending properties and failure analysis of laminated puncture structural Cf/Al composites [J]. Chin. J. Nonferrous Met., 2020, 30: 2597
[27] 冯景鹏, 余 欢, 徐志锋 等. 叠层穿刺结构Cf/Al复合材料的弯曲性能及失效分析 [J]. 中国有色金属学报, 2020, 30: 2597
[28] Gu S, Cai C C, Yu H, et al. Residual compression mechanical properties after low-speed impact for laminated stitched carbon fiber reinforced aluminum matrix composite [J]. J. Aeronaut. Mater., 2022, 42(3): 80
[28] 顾 姝, 蔡长春, 余 欢 等. 叠层缝合碳纤维增强铝基复合材料低速冲击及冲击后剩余压缩力学性能 [J]. 航空材料学报, 2022, 42(3): 80
[29] Nie M M, Xu Z F, Yu H, et al. Micro-defects of 3D-Cf/Al composites by vacuum pressure infiltration [J]. Rare Met. Mater. Eng., 2018, 47: 1266
[29] 聂明明, 徐志锋, 余 欢 等. 真空气压浸渗3D-Cf/Al复合材料微观缺陷分析 [J]. 稀有金属材料与工程, 2018, 47: 1266
[30] Wang L, Wu J Y, Chen C Y, et al. Progressive failure analysis of 2D woven composites at the meso-micro scale [J]. Compos. Struct., 2017, 178: 395
[31] Li S G. Boundary conditions for unit cells from periodic microstructures and their implications [J]. Compos. Sci. Technol., 2008, 68: 1962
[32] Xia Z H, Zhang Y F, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications [J]. Int. J. Solids Struct., 2003, 40: 1907
[33] Wang Z J, Zhao W H, Wang F, et al. Tensile behavior and failure mechanism of 3D woven fabric reinforced aluminum composites [J]. Int. J. Mech. Sci., 2023, 244: 108043
[34] Hidnert P. Thermal expansion of aluminum and various important aluminum alloys [J]. J. Franklin Inst., 1925, 199(4): 539
[35] ABAQUS. Version 6.12 Documentation. Dassault Systemes Simulia Corp. Providence, RI, USA, 2012
[36] Wang Z J, Wang Z Y, Xiong B W, et al. Micromechanics analysis on the microscopic damage mechanism and mechanical behavior of graphite fiber-reinforced aluminum composites under transverse tension loading [J]. J. Alloys Compd., 2020, 815: 152459
[37] Xu Q, Qu S X. Irreversible deformation of metal matrix composites: A study via the mechanism-based cohesive zone model [J]. Mech. Mater., 2015, 89: 72
[38] Lou J H, Yang Y Q, Luo X, et al. The analysis on transverse tensile behavior of SiC/Ti-6Al-4V composites by finite element method [J]. Mater. Des., 2010, 31: 3949
[39] Rupnowski P, Gentz M, Sutter J K, et al. An evaluation of the elastic properties and thermal expansion coefficients of medium and high modulus graphite fibers [J]. Composites, 2005, 3A: 327
[40] Kawabata S. Measurement of the transverse mechanical properties of high performance fibres [J]. J. Text. Inst., 1990, 81: 432
[41] Zhou Y X, Jiang D Z, Xia Y M. Tensile mechanical behavior of T300 and M40J fiber bundles at different strain rate [J]. J. Mater. Sci., 2001, 36: 919
[42] Kaddour A, Hinton M. Maturity of 3D failure criteria for fiber-reinforced composites: Comparison between theories and experiments: Part B of WWFE-II [J]. J. Compos. Mater., 2013, 47: 925
[43] He Q Q, Zhou C W, Zhou C. Micro-mechanical model of thermal expansion/contraction for damaged fiber reinforced composites [J]. Acta Mater. Compos. Sin., 2014, 31: 1077
[43] 何乾强, 周储伟, 周 灿. 纤维增强复合材料考虑损伤的温度胀缩细观力学模型 [J]. 复合材料学报, 2014, 31: 1077
[44] Schapery R A. Thermal expansion coefficients of composite materials based on energy principles [J]. J. Compos. Mater., 1968, 2: 380
[45] Yates B, McCalla B A, Sargent J P, et al. The thermal expansion of carbon fibre reinforced plastics: Part 3 The influence of resin type [J]. J. Mater. Sci., 1978, 13: 2217
[46] Hopkins D A, Chamis C C. A unique set of micromechanics equations for high-temperature metal matrix composites [A]. The First Symposium on Testing Technology of Metal Matrix Composites [C]. Nashvilley: ASTM STP, 1985, 159
[47] Li D G, Chen G Q, Jiang L T, et al. Effect of thermal cycling on the mechanical properties of Cf/Al composites [J]. Mater. Sci. Eng., 2013, A586: 330
[48] Zhou L, Zhang P F, Wang Q Z, et al. Multi-scale study on the fracture behavior of hot compression B4C/6061Al composite [J]. Acta Metall. Sin., 2019, 55: 911
[48] 周 丽, 张鹏飞, 王全兆 等. B4C/6061Al复合材料热压缩断裂行为的多尺度研究 [J]. 金属学报, 2019, 55: 911
[1] 范荣磊, 陈明和, 吴迪鹏, 武永. 基于晶体塑性模型预测TA32钛合金损伤及高温成形极限[J]. 金属学报, 2025, 61(8): 1293-1304.
[2] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[3] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[4] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[5] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[6] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[7] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[8] 徐伟,黄明浩,王金亮,沈春光,张天宇,王晨充. 综述:钢中亚稳奥氏体组织与疲劳性能关系[J]. 金属学报, 2020, 56(4): 459-475.
[9] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[10] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[11] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[12] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[13] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[14] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[15] 丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.