|
|
斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为 |
吴志勇1, 邵徽凡1, 蔡长春1, 曾敏1, 王振军1( ), 王艳丽2, 陈雷2, 熊博文1 |
1 南昌航空大学 航空制造工程学院 南昌 330063 2 中航工业江西洪都航空工业集团有限责任公司 南昌 330096 |
|
Tensile and Fracture Behaviors of Stitched Twill Carbon Fabric Structure Reinforced Aluminum Matrix Composites at Elevated Temperature |
WU Zhiyong1, SHAO Huifan1, CAI Changchun1, ZENG Min1, WANG Zhenjun1( ), WANG Yanli2, CHEN Lei2, XIONG Bowen1 |
1 School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China 2 AVIC Jiangxi Hongdu Aviation Industry Group Co. Ltd., Nanchang 330096, China |
引用本文:
吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
Zhiyong WU,
Huifan SHAO,
Changchun CAI,
Min ZENG,
Zhenjun WANG,
Yanli WANG,
Lei CHEN,
Bowen XIONG.
Tensile and Fracture Behaviors of Stitched Twill Carbon Fabric Structure Reinforced Aluminum Matrix Composites at Elevated Temperature[J]. Acta Metall Sin, 2025, 61(9): 1387-1402.
[1] |
Miracle D B. Metal matrix composites—From science to technological significance [J]. Compos. Sci. Technol., 2005, 65: 2526
|
[2] |
Wenzelburger M, Silber M, Gadow R. Manufacturing of light metal matrix composites by combined thermal spray and semisolid forming process—Summary of the current state of technology [J]. Key Eng. Mater., 2010, 425: 217
|
[3] |
Wang Y, Xu X, Zhao W X, et al. Damage accumulation during high temperature fatigue of Ti/SiCf metal matrix composites under different stress amplitudes [J]. Acta Mater., 2021, 213: 116976
|
[4] |
Ma Z Y, Xiao B L, Zhang J F, et al. Overview of research and development for aluminum matrix composites driven by aerospace equipment demand [J]. Acta Metall. Sin., 2023, 59: 457
doi: 10.11900/0412.1961.2022.00605
|
[4] |
马宗义, 肖伯律, 张峻凡 等. 航天装备牵引下的铝基复合材料研究进展与展望 [J]. 金属学报, 2023, 59: 457
doi: 10.11900/0412.1961.2022.00605
|
[5] |
Kim B R, Lee H K. Elastoplastic modeling of circular fiber-reinforced ductile matrix composites considering a finite RVE [J]. Int. J. Solids Struct., 2010, 47: 827
|
[6] |
Chen Y L, Ghosh S. Micromechanical analysis of strain rate-dependent deformation and failure in composite microstructures under dynamic loading conditions [J]. Int. J. Plast., 2012, 32-33: 218
|
[7] |
Giugliano D, Barbera D, Chen H F. Effect of fiber cross section geometry on cyclic plastic behavior of continuous fiber reinforced aluminum matrix composites [J]. Eur. J. Mech., 2017, 61A: 35
|
[8] |
Giugliano D, Chen H F. Micromechanical modeling on cyclic plastic behavior of unidirectional fiber reinforced aluminum matrix composites [J]. Eur. J. Mech., 2016, 59A: 155
|
[9] |
Zhu X J, Chen X F, Zhai Z, et al. Micromechanical analysis of interfacial debonding in metal matrix composites subjected to off-axis loading [J]. Fiber Compos., 2013, 3: 53
|
[10] |
Behera N, Murari Pandey K M, Deoghare A B, et al. Modeling & simulation of interface stability in metal matrix composites subjected to off-axis loading using cohesive zone model under elevated temperature: A review [J]. Mater. Today Proc., 2018, 5: 20085
|
[11] |
Eggleston M R, Krempl E. The transverse creep and tensile behaviour of SCS-6/Ti-6Al-4V metal matrix composites at 482 oC [J]. Mech. Compos. Mater. Struct., 1994, 1: 53
|
[12] |
Aghdam M M, Morsali S R, Hosseini S M A, et al. Mechanical behavior of unidirectional SiC/Ti composites subjected to off-axis loading at elevated temperatures [J]. Mater. Sci. Eng., 2017, A688: 244
|
[13] |
Aghdam M M, Morsali S R. Damage initiation and collapse behavior of unidirectional metal matrix composites at elevated temperatures [J]. Comput. Mater. Sci., 2013, 79: 402
|
[14] |
Vassel A. Continuous fibre reinforced titanium and aluminium composites: A comparison [J]. Mater. Sci. Eng., 1999, A263: 305
|
[15] |
Zhang Y H, Yan L L, Miao M H, et al. Microstructure and mechanical properties of z-pinned carbon fiber reinforced aluminum alloy composites [J]. Mater. Des., 2015, 86: 872
|
[16] |
Zhang Y, Wu G, Chen G, et al. Microstructure and mechanical properties of 2D woven Grf/Al composite [J]. Trans. Noferrous Met. Soc. China, 2006, 16(spec. issue3) : S1509
|
[17] |
Ma Y Q, Qi L H, Zheng W Q, et al. Effect of specific pressure on fabrication of 2D-Cf/Al composite by vacuum and pressure infiltration [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1915
|
[18] |
Zhou J M, Zheng W Q, Qi L H, et al. Investigation on compressive failure mechanism of 2D cross-ply Cf/Al composites by extrusion directly following vacuum pressure infiltration process [J]. J. Shanghai Univ. (Nat. Sci.), 2014, 20: 75
|
[18] |
周计明, 郑武强, 齐乐华 等. 真空吸渗挤压二维正交铺层复合材料压缩失效机制 [J]. 上海大学学报(自然科学版), 2014, 20: 75
|
[19] |
Hufenbach W, Gude M, Czulak A. Development of textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods [J]. J. Achiev. Mater. Manuf. Eng., 2009, 2: 177
|
[20] |
Yang Q R, Liu J X, Li S K, et al. Fabrication and mechanical properties of Cu-coated woven carbon fibers reinforced aluminum alloy composite [J]. Mater. Des., 2014, 57: 442
|
[21] |
Yang Q R, Liu J X, Li S K, et al. Bending mechanical property and failure mechanisms of woven carbon fiber-reinforced aluminum alloy composite [J]. Rare Met., 2016, 35: 915
|
[22] |
Zhang J J, Liu S C, Zhang Y X, et al. Fabrication of woven carbon fibers reinforced Al-Mg (95-5wt%) matrix composites by an electromagnetic casting process [J]. J. Mater. Process. Technol., 2015, 226: 78
|
[23] |
Zhang J J, Liu S C, Lu Y P, et al. Semisolid-rolling and annealing process of woven carbon fibers reinforced Al-matrix composites [J]. J. Mater. Sci. Technol., 2017, 33: 623
doi: 10.1016/j.jmst.2017.01.002
|
[24] |
Lee S K, Byun J H, Hong S H. Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites [J]. Mater. Sci. Eng., 2003, A347: 346
|
[25] |
McWilliams B, Dibelka J, Yen C F. Multi scale modeling and characterization of inelastic deformation mechanisms in continuous fiber and 2D woven fabric reinforced metal matrix composites [J]. Mater. Sci. Eng., 2014, A618: 142
|
[26] |
Sheng G F, Wang Z J, Liu F H, et al. Quasi-static tensile behavior and failure mechanism of laminated puncture CF/Al composites [J]. Acta Aeronaut. Astronaut. Sin., 2021, 42(12): 345
|
[26] |
沈高峰, 王振军, 刘丰华 等. 叠层穿刺CF/Al复合材料准静态拉伸力学行为与失效机制 [J]. 航空学报, 2021, 42(12): 345
|
[27] |
Feng J P, Yu H, Xu Z F, et al. Bending properties and failure analysis of laminated puncture structural Cf/Al composites [J]. Chin. J. Nonferrous Met., 2020, 30: 2597
|
[27] |
冯景鹏, 余 欢, 徐志锋 等. 叠层穿刺结构Cf/Al复合材料的弯曲性能及失效分析 [J]. 中国有色金属学报, 2020, 30: 2597
|
[28] |
Gu S, Cai C C, Yu H, et al. Residual compression mechanical properties after low-speed impact for laminated stitched carbon fiber reinforced aluminum matrix composite [J]. J. Aeronaut. Mater., 2022, 42(3): 80
|
[28] |
顾 姝, 蔡长春, 余 欢 等. 叠层缝合碳纤维增强铝基复合材料低速冲击及冲击后剩余压缩力学性能 [J]. 航空材料学报, 2022, 42(3): 80
|
[29] |
Nie M M, Xu Z F, Yu H, et al. Micro-defects of 3D-Cf/Al composites by vacuum pressure infiltration [J]. Rare Met. Mater. Eng., 2018, 47: 1266
|
[29] |
聂明明, 徐志锋, 余 欢 等. 真空气压浸渗3D-Cf/Al复合材料微观缺陷分析 [J]. 稀有金属材料与工程, 2018, 47: 1266
|
[30] |
Wang L, Wu J Y, Chen C Y, et al. Progressive failure analysis of 2D woven composites at the meso-micro scale [J]. Compos. Struct., 2017, 178: 395
|
[31] |
Li S G. Boundary conditions for unit cells from periodic microstructures and their implications [J]. Compos. Sci. Technol., 2008, 68: 1962
|
[32] |
Xia Z H, Zhang Y F, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications [J]. Int. J. Solids Struct., 2003, 40: 1907
|
[33] |
Wang Z J, Zhao W H, Wang F, et al. Tensile behavior and failure mechanism of 3D woven fabric reinforced aluminum composites [J]. Int. J. Mech. Sci., 2023, 244: 108043
|
[34] |
Hidnert P. Thermal expansion of aluminum and various important aluminum alloys [J]. J. Franklin Inst., 1925, 199(4): 539
|
[35] |
ABAQUS. Version 6.12 Documentation. Dassault Systemes Simulia Corp. Providence, RI, USA, 2012
|
[36] |
Wang Z J, Wang Z Y, Xiong B W, et al. Micromechanics analysis on the microscopic damage mechanism and mechanical behavior of graphite fiber-reinforced aluminum composites under transverse tension loading [J]. J. Alloys Compd., 2020, 815: 152459
|
[37] |
Xu Q, Qu S X. Irreversible deformation of metal matrix composites: A study via the mechanism-based cohesive zone model [J]. Mech. Mater., 2015, 89: 72
|
[38] |
Lou J H, Yang Y Q, Luo X, et al. The analysis on transverse tensile behavior of SiC/Ti-6Al-4V composites by finite element method [J]. Mater. Des., 2010, 31: 3949
|
[39] |
Rupnowski P, Gentz M, Sutter J K, et al. An evaluation of the elastic properties and thermal expansion coefficients of medium and high modulus graphite fibers [J]. Composites, 2005, 3A: 327
|
[40] |
Kawabata S. Measurement of the transverse mechanical properties of high performance fibres [J]. J. Text. Inst., 1990, 81: 432
|
[41] |
Zhou Y X, Jiang D Z, Xia Y M. Tensile mechanical behavior of T300 and M40J fiber bundles at different strain rate [J]. J. Mater. Sci., 2001, 36: 919
|
[42] |
Kaddour A, Hinton M. Maturity of 3D failure criteria for fiber-reinforced composites: Comparison between theories and experiments: Part B of WWFE-II [J]. J. Compos. Mater., 2013, 47: 925
|
[43] |
He Q Q, Zhou C W, Zhou C. Micro-mechanical model of thermal expansion/contraction for damaged fiber reinforced composites [J]. Acta Mater. Compos. Sin., 2014, 31: 1077
|
[43] |
何乾强, 周储伟, 周 灿. 纤维增强复合材料考虑损伤的温度胀缩细观力学模型 [J]. 复合材料学报, 2014, 31: 1077
|
[44] |
Schapery R A. Thermal expansion coefficients of composite materials based on energy principles [J]. J. Compos. Mater., 1968, 2: 380
|
[45] |
Yates B, McCalla B A, Sargent J P, et al. The thermal expansion of carbon fibre reinforced plastics: Part 3 The influence of resin type [J]. J. Mater. Sci., 1978, 13: 2217
|
[46] |
Hopkins D A, Chamis C C. A unique set of micromechanics equations for high-temperature metal matrix composites [A]. The First Symposium on Testing Technology of Metal Matrix Composites [C]. Nashvilley: ASTM STP, 1985, 159
|
[47] |
Li D G, Chen G Q, Jiang L T, et al. Effect of thermal cycling on the mechanical properties of Cf/Al composites [J]. Mater. Sci. Eng., 2013, A586: 330
|
[48] |
Zhou L, Zhang P F, Wang Q Z, et al. Multi-scale study on the fracture behavior of hot compression B4C/6061Al composite [J]. Acta Metall. Sin., 2019, 55: 911
|
[48] |
周 丽, 张鹏飞, 王全兆 等. B4C/6061Al复合材料热压缩断裂行为的多尺度研究 [J]. 金属学报, 2019, 55: 911
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|