|
|
基于晶体塑性模型预测TA32钛合金损伤及高温成形极限 |
范荣磊, 陈明和( ), 吴迪鹏, 武永 |
南京航空航天大学 机电学院 南京 210016 |
|
Prediction of Damage and Hot Forming Limit of TA32 Titanium Alloy Based on Crystal Plasticity Model |
FAN Ronglei, CHEN Minghe( ), WU Dipeng, WU Yong |
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
引用本文:
范荣磊, 陈明和, 吴迪鹏, 武永. 基于晶体塑性模型预测TA32钛合金损伤及高温成形极限[J]. 金属学报, 2025, 61(8): 1293-1304.
Ronglei FAN,
Minghe CHEN,
Dipeng WU,
Yong WU.
Prediction of Damage and Hot Forming Limit of TA32 Titanium Alloy Based on Crystal Plasticity Model[J]. Acta Metall Sin, 2025, 61(8): 1293-1304.
[1] |
Paul S K. Controlling factors of forming limit curve: A review [J]. Adv. Ind. Manuf. Eng., 2021, 2: 100033
|
[2] |
Marciniak Z, Kuczyński K. Limit strains in the processes of stretch-forming sheet metal [J]. Int. J. Mech. Sci., 1967, 9: 609
|
[3] |
Banabic D, Kami A, Comsa D S, et al. Developments of the Marciniak-Kuczynski model for sheet metal formability: A review [J]. J. Mater. Process. Technol., 2021, 287: 116446
|
[4] |
Fan R L, Wu Y, Chen M H, et al. Prediction of anisotropic deformation behavior of TA32 titanium alloy sheet during hot tension by crystal plasticity finite element model [J]. Mater. Sci. Eng., 2022, A843: 143137
|
[5] |
Kim J H, Lee M G, Kang J H, et al. Crystal plasticity finite element analysis of ferritic stainless steel for sheet formability prediction [J]. Int. J. Plast., 2017, 93: 26
|
[6] |
Bong H J, Lee J, Hu X H, et al. Predicting forming limit diagrams for magnesium alloys using crystal plasticity finite elements [J]. Int. J. Plast., 2020, 126: 102630
|
[7] |
Cai W, Qian L Y, Sun C Y, et al. Prediction of forming limit of TWIP steel sheet based on CPFE-MK model [J]. J. Plast. Eng., 2021, 28(6): 53
doi: 10.3969/j.issn.1007-2012.2021.06.007
|
[7] |
蔡 旺, 钱凌云, 孙朝阳 等. 基于CPFE-MK模型的TWIP钢板成形极限预测 [J]. 塑性工程学报, 2021, 28(6): 53
|
[8] |
Nagra J S, Brahme A, Mishra R, et al. An efficient full-field crystal plasticity-based M-K framework to study the effect of 3D microstructural features on the formability of polycrystalline materials [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 075002
|
[9] |
Li Z H, Zhou G W, Li D Y, et al. Forming limits of magnesium alloy AZ31B sheet at elevated temperatures [J]. Int. J. Plast., 2020, 135: 102822
|
[10] |
Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective [J]. J. Aeronaut. Mater., 2014, 34(4): 1
|
[10] |
王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
doi: 10.11868/j.issn.1005-5053.2014.4.001
|
[11] |
Kumar S S S, Pavithra B, Singh V, et al. Tensile anisotropy associated microstructural and microtextural evolution in a metastable beta titanium alloy [J]. Mater. Sci. Eng., 2019, A747: 1
|
[12] |
Fan R L, Chen M H, Wu Y, et al. Prediction and experiment of fracture behavior in hot press forming of a TA32 titanium alloy rolled sheet [J]. Metals, 2018, 8: 985
|
[13] |
Zhang C, Xu X W, Mao C J. Progressive damage simulation and strength prediction of 3D braided composites [J]. Acta Mater. Compos. Sin., 2011, 28(2): 222
|
[13] |
张 超, 许希武, 毛春见. 三维编织复合材料渐进损伤模拟及强度预测 [J]. 复合材料学报, 2011, 28(2): 222
|
[14] |
Asaro R J, Rice J R. Strain localization in ductile single crystals [J]. J. Mech. Phys. Solids, 1977, 25: 309
|
[15] |
Zhao J, Lv L X, Liu G, et al. Analysis of deformation inhomogeneity and slip mode of TA15 titanium alloy sheets during the hot tensile process based on crystal plasticity model [J]. Mater. Sci. Eng., 2017, A707: 30
|
[16] |
Busso E P, Meissonnier F T, O'Dowd N P. Gradient-dependent deformation of two-phase single crystals [J]. J. Mech. Phys. Solids, 2000, 48: 2333
|
[17] |
Kocks U F, Mecking H. Physics and phenomenology of strain hardening: The FCC case [J]. Prog. Mater. Sci., 2003, 48: 171
|
[18] |
Hu Q, Zhang F F, Li X F, et al. Overview on the prediction models for sheet metal forming failure: Necking and ductile fracture [J]. Acta Mech. Solida Sin., 2018, 31: 259
|
[19] |
Wu D, Liu L B, Zhang L G, et al. Tensile deformation mechanism and micro-void nucleation of Ti-55531 alloy with bimodal microstructure [J]. J. Mater. Res. Technol., 2020, 9: 15442
|
[20] |
Freudenthal A M. The Inelastic Behavior of Engineering Materials and Structures [M]. New York: Wiley, 1950: 128
|
[21] |
Zhao J, Wang K H, Lv L X, et al. Analysing the interaction between microscopic deformation, microstructure and void evolution of near-α titanium alloys during non-superplastic hot deformation by an integrated crystal plasticity finite element model [J]. Materials, 2022, 15: 294
|
[22] |
Hu Q, Li X F, Chen J. New robust algorithms for Marciniak-Kuczynski model to calculate the forming limit diagrams [J]. Int. J. Mech. Sci., 2018, 148: 293
|
[23] |
Alabort E, Kontis P, Barba D, et al. On the mechanisms of superplasticity in Ti-6Al-4V [J]. Acta Mater., 2016, 105: 449
|
[24] |
Kim J Y, Rokhlin S I. Determination of elastic constants of generally anisotropic inclined lamellar structure using line-focus acoustic microscopy [J]. J. Acoust. Soc. Am., 2009, 126: 2998
|
[25] |
Bai Q, Lin J, Dean T A, et al. Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions [J]. Mater. Sci. Eng., 2013, A559: 352
|
[26] |
Wu Y, Fan R L, Chen M H, et al. High-temperature anisotropic behaviors and microstructure evolution mechanisms of a near-α Ti-alloy sheet [J]. Mater. Sci. Eng., 2021, A820: 141560
|
[27] |
Signorelli J W, Serenelli M J, Bertinetti M A. Experimental and numerical study of the role of crystallographic texture on the formability of an electro-galvanized steel sheet [J]. J. Mater. Process. Technol., 2012, 212: 1367
|
[28] |
Cyr E, Mohammadi M, Brahme A, et al. Modeling the formability of aluminum alloys at elevated temperatures using a new thermo-elasto-viscoplastic crystal plasticity framework [J]. Int. J. Mech. Sci., 2017, 128-129: 312
|
[29] |
Wang Y B, Zhang C S, Yang Y, et al. The integration of through-thickness normal stress and friction stress in the M-K model to improve the accuracy of predicted FLCs [J]. Int. J. Plast., 2019, 120: 147
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|