Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1293-1304    DOI: 10.11900/0412.1961.2023.00278
  研究论文 本期目录 | 过刊浏览 |
基于晶体塑性模型预测TA32钛合金损伤及高温成形极限
范荣磊, 陈明和(), 吴迪鹏, 武永
南京航空航天大学 机电学院 南京 210016
Prediction of Damage and Hot Forming Limit of TA32 Titanium Alloy Based on Crystal Plasticity Model
FAN Ronglei, CHEN Minghe(), WU Dipeng, WU Yong
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
引用本文:

范荣磊, 陈明和, 吴迪鹏, 武永. 基于晶体塑性模型预测TA32钛合金损伤及高温成形极限[J]. 金属学报, 2025, 61(8): 1293-1304.
Ronglei FAN, Minghe CHEN, Dipeng WU, Yong WU. Prediction of Damage and Hot Forming Limit of TA32 Titanium Alloy Based on Crystal Plasticity Model[J]. Acta Metall Sin, 2025, 61(8): 1293-1304.

全文: PDF(3405 KB)   HTML
摘要: 

晶体塑性模型将金属材料的塑性变形与微观组织演化相统一,为更好地理解钛合金高温复杂变形机制和预测不同应变路径下的成形极限提供了一种强有力的工具。本工作基于TA32钛合金板材的微观组织及晶体取向建立了一种考虑损伤演化的晶体塑性有限元(CPFE)模型,并通过耦合CPFE模型与M-K凹槽理论预测了TA32板材在750 ℃下的成形极限图(FLD)。结果表明,所提出的CPFE模型准确地预测了TA32板材在750 ℃不同应变速率下的宏观力学响应、微观非均匀变形和损伤演化行为。在不同应变路径下,原始板材中基面双峰织构的基面滑移系和柱面滑移系均难以被激活,导致其比横向织构更容易诱导损伤。采用CPFE-M-K耦合模型预测的FLD与实验结果吻合良好,并准确捕捉到了等双轴拉伸区域附近极限主应变降低的现象,分析表明其与材料力学性能的各向异性密切相关。此外,CPFE-M-K耦合模型中凹槽初始倾角的改变会显著影响TA32板材成形极限的预测精度,应变增量比为-0.5~0.5和0.6~1.0范围内的临界初始倾角分别为0°和90°。

关键词 晶体塑性M-K理论TA32钛合金板材损伤演化成形极限    
Abstract

Forming limit diagram (FLD) is a crucial tool for assessing the formability of sheet metals under various forming conditions. However, conducting FLD experiments can be challenging and time-consuming requiring numerical determination of FLDs. Marciniak-Kuczyński (M-K) theory is one of the most well-known instability criteria for calculating forming limits, and the rapid development of crystal plasticity models provides a feasible framework for better understanding the relation between flow localization and material microstructure. Therefore, integrating the M-K theory with advanced crystal plasticity models offers a potential approach to precisely predict forming limits and explore the complex interaction between material behavior and microstructural characteristics. In this study, a crystal plasticity finite element (CPFE) model considering damage evolution was developed based on the microstructure and crystal orientation of a TA32 titanium alloy sheet. The material parameters for the proposed model were calibrated through uniaxial tensile tests and microstructure characterization. The internal correlation between damage evolution and the dislocation slip mechanism under different strain paths was analyzed at the grain scale. Additionally, the FLD of the TA32 sheet at 750 oC was predicted by coupling the CPFE model with the M-K theory. The results show that the proposed CPFE model accurately predicts the macroscopic mechanical response, microscopic inhomogeneous deformation, and damage evolution behavior of the TA32 sheet under different strain rates at 750 oC. The difference in the deformation behavior and damage propagation was mainly attributed to the anisotropic activation of various slip systems. The basal and prismatic slip systems of the basal bimodal texture in the original sheet were difficult to be activated under different strain paths, making it easier to induce damage than the transverse texture. The FLD predicted by the CPFE-M-K coupling model agrees well with the Nakazima test results, accurately capturing the decrease in the limit of major strain near the equibiaxial tensile region. This decrease is closely related to the anisotropy of the mechanical properties of the material. Furthermore, the change in the initial inclination angle of the groove in the CPFE-M-K coupling model considerably affects the prediction accuracy of the forming limits of the TA32 sheet. The critical initial inclination angles within the strain increment ratio ranges of -0.5-0.5 and 0.6-1.0 are 0° and 90°, respectively.

Key wordscrystal plasticity    M-K theory    TA32 titanium alloy sheet    damage evolution    forming limit
收稿日期: 2023-07-03     
ZTFLH:  TG386  
基金资助:国家自然科学基金项目(51805256);国家自然科学基金项目(52375345);中央高校基本科研业务费专项资金项目(56XAC21017);中国博士后科学基金项目(2020M670792)
通讯作者: 陈明和,meemhchen@nuaa.edu.cn,主要从事板料成形CAE技术、高性能轻量化材料精确成形技术和超塑成形/扩散连接技术方面的研究
Corresponding author: CHEN Minghe, professor, Tel: 13951809276, E-mail: meemhchen@nuaa.edu.cn
作者简介: 范荣磊,男,1994年生,博士生
图1  初始组织的EBSD结果
图2  拉伸试样尺寸
图3  Nakazima实验示意图
图4  有限元模型
图5  晶体塑性有限元(CPFE)-Marciniak-Kuczyński (M-K) (CPFE-M-K)耦合模型预测成形极限图(FLD)的示意图
Phaseμ0 / GPaTM / KTMμ0dμdTElastic constant at room temperature / GPa
C11C12C13C33C44
α43.61933-1.2141.076.957.9163.048.7
β20.51933-0.5135.0113.0--54.9
表1  钛合金中α相和β相的物理参数[23,24]
ItemParameterValueUnit
Elastic constant of α phaseC11, C12, C13, C33, C4478, 42, 32, 90, 27GPa
Elastic constant of β phaseC11, C12, C44110, 92, 45GPa
Shear modulusμ24 (α), 17 (β)GPa
Reference shear rateγ˙00.1, 0.01, 0.001s-1
Dislocation activation energyQS413 (α), 600 (β)kJ·mol-1
Boltzmann constantkB1.38 × 10-23J·K-1
Material indexp, q0.5, 1.5-
Critical resolved shear stressτcr-prism, τcr-{110}[111]140 (α), 112 (β)-
Hardening coefficientω1, ω21.5, 1.3-
Statistical coefficientλ0.12-
Burgers vectorb0.295 (α), 0.286 (β)nm
Dislocation multiplication constantk31278-
Dislocation annihilation constantk4-14754-
Damage related material constantd1300-
表2  750 ℃下TA32钛合金CPFE模型中的材料参数
图6  CPFE模型单轴拉伸实验结果与模拟结果对比及云图
图7  不同取向晶粒变形行为分析
图8  TA32板材以0.01 s-1应变速率单轴拉伸时微孔洞的模拟与实验结果
图9  RVE损伤分数预测结果
图10  RVE在750 ℃以0.01 s-1应变速率变形至等效应变0.3时的模拟结果
图11  不同路径下达到最小极限应变时的凹槽临界初始倾角
图12  750 ℃下实验与预测FLD的对比
[1] Paul S K. Controlling factors of forming limit curve: A review [J]. Adv. Ind. Manuf. Eng., 2021, 2: 100033
[2] Marciniak Z, Kuczyński K. Limit strains in the processes of stretch-forming sheet metal [J]. Int. J. Mech. Sci., 1967, 9: 609
[3] Banabic D, Kami A, Comsa D S, et al. Developments of the Marciniak-Kuczynski model for sheet metal formability: A review [J]. J. Mater. Process. Technol., 2021, 287: 116446
[4] Fan R L, Wu Y, Chen M H, et al. Prediction of anisotropic deformation behavior of TA32 titanium alloy sheet during hot tension by crystal plasticity finite element model [J]. Mater. Sci. Eng., 2022, A843: 143137
[5] Kim J H, Lee M G, Kang J H, et al. Crystal plasticity finite element analysis of ferritic stainless steel for sheet formability prediction [J]. Int. J. Plast., 2017, 93: 26
[6] Bong H J, Lee J, Hu X H, et al. Predicting forming limit diagrams for magnesium alloys using crystal plasticity finite elements [J]. Int. J. Plast., 2020, 126: 102630
[7] Cai W, Qian L Y, Sun C Y, et al. Prediction of forming limit of TWIP steel sheet based on CPFE-MK model [J]. J. Plast. Eng., 2021, 28(6): 53
doi: 10.3969/j.issn.1007-2012.2021.06.007
[7] 蔡 旺, 钱凌云, 孙朝阳 等. 基于CPFE-MK模型的TWIP钢板成形极限预测 [J]. 塑性工程学报, 2021, 28(6): 53
[8] Nagra J S, Brahme A, Mishra R, et al. An efficient full-field crystal plasticity-based M-K framework to study the effect of 3D microstructural features on the formability of polycrystalline materials [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 075002
[9] Li Z H, Zhou G W, Li D Y, et al. Forming limits of magnesium alloy AZ31B sheet at elevated temperatures [J]. Int. J. Plast., 2020, 135: 102822
[10] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective [J]. J. Aeronaut. Mater., 2014, 34(4): 1
[10] 王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
doi: 10.11868/j.issn.1005-5053.2014.4.001
[11] Kumar S S S, Pavithra B, Singh V, et al. Tensile anisotropy associated microstructural and microtextural evolution in a metastable beta titanium alloy [J]. Mater. Sci. Eng., 2019, A747: 1
[12] Fan R L, Chen M H, Wu Y, et al. Prediction and experiment of fracture behavior in hot press forming of a TA32 titanium alloy rolled sheet [J]. Metals, 2018, 8: 985
[13] Zhang C, Xu X W, Mao C J. Progressive damage simulation and strength prediction of 3D braided composites [J]. Acta Mater. Compos. Sin., 2011, 28(2): 222
[13] 张 超, 许希武, 毛春见. 三维编织复合材料渐进损伤模拟及强度预测 [J]. 复合材料学报, 2011, 28(2): 222
[14] Asaro R J, Rice J R. Strain localization in ductile single crystals [J]. J. Mech. Phys. Solids, 1977, 25: 309
[15] Zhao J, Lv L X, Liu G, et al. Analysis of deformation inhomogeneity and slip mode of TA15 titanium alloy sheets during the hot tensile process based on crystal plasticity model [J]. Mater. Sci. Eng., 2017, A707: 30
[16] Busso E P, Meissonnier F T, O'Dowd N P. Gradient-dependent deformation of two-phase single crystals [J]. J. Mech. Phys. Solids, 2000, 48: 2333
[17] Kocks U F, Mecking H. Physics and phenomenology of strain hardening: The FCC case [J]. Prog. Mater. Sci., 2003, 48: 171
[18] Hu Q, Zhang F F, Li X F, et al. Overview on the prediction models for sheet metal forming failure: Necking and ductile fracture [J]. Acta Mech. Solida Sin., 2018, 31: 259
[19] Wu D, Liu L B, Zhang L G, et al. Tensile deformation mechanism and micro-void nucleation of Ti-55531 alloy with bimodal microstructure [J]. J. Mater. Res. Technol., 2020, 9: 15442
[20] Freudenthal A M. The Inelastic Behavior of Engineering Materials and Structures [M]. New York: Wiley, 1950: 128
[21] Zhao J, Wang K H, Lv L X, et al. Analysing the interaction between microscopic deformation, microstructure and void evolution of near-α titanium alloys during non-superplastic hot deformation by an integrated crystal plasticity finite element model [J]. Materials, 2022, 15: 294
[22] Hu Q, Li X F, Chen J. New robust algorithms for Marciniak-Kuczynski model to calculate the forming limit diagrams [J]. Int. J. Mech. Sci., 2018, 148: 293
[23] Alabort E, Kontis P, Barba D, et al. On the mechanisms of superplasticity in Ti-6Al-4V [J]. Acta Mater., 2016, 105: 449
[24] Kim J Y, Rokhlin S I. Determination of elastic constants of generally anisotropic inclined lamellar structure using line-focus acoustic microscopy [J]. J. Acoust. Soc. Am., 2009, 126: 2998
[25] Bai Q, Lin J, Dean T A, et al. Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions [J]. Mater. Sci. Eng., 2013, A559: 352
[26] Wu Y, Fan R L, Chen M H, et al. High-temperature anisotropic behaviors and microstructure evolution mechanisms of a near-α Ti-alloy sheet [J]. Mater. Sci. Eng., 2021, A820: 141560
[27] Signorelli J W, Serenelli M J, Bertinetti M A. Experimental and numerical study of the role of crystallographic texture on the formability of an electro-galvanized steel sheet [J]. J. Mater. Process. Technol., 2012, 212: 1367
[28] Cyr E, Mohammadi M, Brahme A, et al. Modeling the formability of aluminum alloys at elevated temperatures using a new thermo-elasto-viscoplastic crystal plasticity framework [J]. Int. J. Mech. Sci., 2017, 128-129: 312
[29] Wang Y B, Zhang C S, Yang Y, et al. The integration of through-thickness normal stress and friction stress in the M-K model to improve the accuracy of predicted FLCs [J]. Int. J. Plast., 2019, 120: 147
[1] 尚宏春, 田中旺, 牛兰杰, 范晨阳, 张哲伟, 娄燕山. 5182-O铝合金屈服演化行为表征及晶体塑性模拟[J]. 金属学报, 2025, 61(8): 1276-1292.
[2] 贾春妮, 刘腾远, 郑成武, 王培, 李殿中. 中锰钢奥氏体中化学界面变形行为的晶体塑性研究[J]. 金属学报, 2025, 61(2): 349-360.
[3] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[5] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[6] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[7] 初冠南,林艳丽,宋伟宁,张林. 基于二次多项式新本构模型的铝合金搅拌摩擦焊板材成形极限研究[J]. 金属学报, 2017, 53(1): 114-122.
[8] 韩世伟, 石多奇, 杨晓光, 苗国磊. 微结构相关的高循环疲劳分散性计算方法研究*[J]. 金属学报, 2016, 52(3): 289-297.
[9] 陈守东,刘相华,刘立忠,宋孟. Cu极薄带轧制中滑移与变形的晶体塑性有限元模拟*[J]. 金属学报, 2016, 52(1): 120-128.
[10] 孙朝阳, 郭祥如, 黄杰, 郭宁, 王善伟, 杨竞. 耦合孪生的TWIP钢单晶体塑性变形行为模拟研究[J]. 金属学报, 2015, 51(3): 357-363.
[11] 孙朝阳,郭祥如,郭宁,杨竞,黄杰. 耦合孪生的TWIP钢多晶体塑性变形行为研究*[J]. 金属学报, 2015, 51(12): 1507-1515.
[12] 闫五柱, 张嘉振, 周振功, 岳珠峰. 基于晶体塑性理论的晶界压痕行为研究[J]. 金属学报, 2015, 51(1): 100-106.
[13] 胡桂娟 张克实 石艳柯 苏莉. 多晶Cu屈服及后继屈服拉扭实验的晶体塑性数值分析[J]. 金属学报, 2010, 46(4): 466-472.
[14] 石艳柯 张克实 胡桂娟. 多晶Cu在双向加载下的后继屈服与塑性流动分析[J]. 金属学报, 2009, 45(11): 1370-1377.
[15] 张克实; 郭运强; 刘林 . γ-γ'双相镍基高温合金蠕变损伤的微观分析[J]. 金属学报, 2007, 43(9): 961-967 .