Please wait a minute...
金属学报  2025, Vol. 61 Issue (9): 1375-1386    DOI: 10.11900/0412.1961.2023.00452
  研究论文 本期目录 | 过刊浏览 |
GH3230合金薄板填丝钨极氩弧焊接头的组织稳定性
张天昊1,2, 鞠泉2, 蒙肇斌2, 王浩1(), 胡本芙1
1 北京科技大学 材料科学与工程学院 北京 100083
2 北京钢研高纳科技股份有限公司 北京 100081
Microstructural Stability in Tungsten Argon-Arc Welded Joint of GH3230 Superalloy Plate
ZHANG Tianhao1,2, JU Quan2, MENG Zhaobin2, WANG Hao1(), HU Benfu1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Gaona Aero Material Co. Ltd., Beijing 100081, China
引用本文:

张天昊, 鞠泉, 蒙肇斌, 王浩, 胡本芙. GH3230合金薄板填丝钨极氩弧焊接头的组织稳定性[J]. 金属学报, 2025, 61(9): 1375-1386.
Tianhao ZHANG, Quan JU, Zhaobin MENG, Hao WANG, Benfu HU. Microstructural Stability in Tungsten Argon-Arc Welded Joint of GH3230 Superalloy Plate[J]. Acta Metall Sin, 2025, 61(9): 1375-1386.

全文: PDF(5228 KB)   HTML
摘要: 

GH3230合金焊接薄板用于制造先进航空发动机的热端部件,焊接接头组织稳定性与发动机的安全性及可靠性紧密相关。为阐明不同服役条件下焊接接头显微组织的变化规律,本工作研究了GH3230合金薄板填丝钨极氩弧焊接头经不同高温(700~1000 ℃)长期热暴露处理后的显微组织以及碳化物的演变。结果表明,不同温度热暴露2000 h后,焊缝区树枝晶形貌消失,枝晶偏析程度显著降低,热影响区晶粒尺寸不均匀,晶粒内及晶界碳化物析出明显增多。不同温度长期热暴露后焊接接头中的2类碳化物(Cr, W)23C6和(W, Cr)6C中合金元素的固溶度和含量发生变化,M23C6型碳化物粗化速率明显增大。GH3230合金氩弧焊接薄板在长期热暴露中,焊接接头内发生了碳化物类型、数量、尺寸、形貌和位置分布变化及碳化物间的退化反应。

关键词 GH3230合金焊接接头长期热暴露处理碳化物退化反应    
Abstract

GH3230 superalloy has excellent high-temperature mechanical properties and oxidation resistance; hence, it is widely used to manufacture key high-temperature structural components in the aerospace and other fields. In the research, development and production process of aero-engines and gas turbines, GH3230 superalloy plate is often used to make the welded components of a combustion chamber. Excellent weldability is an important technical index and is also an important basis for the plate component design and welding process formulation. For GH3230 superalloy welded plates used at high temperature, the stability of the microstructure of the welded joint is closely related to the mechanical properties of welded components. However, in theory, some deficits remain in the in-depth study of scientific problems regarding GH3230 superalloy welding; hence, the microstructure evolution of welded joint during its long-term service at high temperature has attracted attention. This study focuses on observing and analyzing the experimental phenomena of microstructural changes in welded joint (in the weld and heat affected zones), changes in the alloy element content of carbides, the coarsening rate of carbides, and degradation reaction between carbides after long-term thermal exposure at various high temperatures. Experimental results show that in the tungsten argon-arc welded thin plate of GH3230 superalloy, the dendrite morphology of the weld zone disappears after 2000 h of thermal exposure. Furthermore, the degree of dendrite segregation decreases remarkably, grain size in the heat affected zone becomes uneven, and carbide precipitation in the grain and grain boundary increases obviously. After long-term thermal exposure at various temperatures, the solid solubility and content of alloying elements in two types of carbides—(Cr, W)23C6 and (W, Cr)6C—in the welded joint change and coarsening rate of M23C6 carbide exhibits an obvious increase. During the long-term thermal exposure of the argon-arc welded thin plate, the microstructures of the weld and heat affected zones undergo alloy carbide degradation based on diffusion, which changes the type, quantity, size, morphology, and location distribution of carbide.

Key wordsGH3230 superalloy    welded joint    long-term thermal exposure treatment    carbide    degradation reaction
收稿日期: 2023-11-15     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(51571020)
通讯作者: 王 浩,hwang@ustb.edu.cn,主要从事金属材料优化设计和计算材料学研究
Corresponding author: WANG Hao, professor, Tel: 13811892951, E-mail: hwang@ustb.edu.cn
作者简介: 张天昊,男,1998年生,博士生
图1  GH3230合金填丝钨极氩弧焊接薄板焊接接头及母材显微组织的OM像
图2  GH3230合金填丝钨极氩弧焊接薄板经1000 ℃热暴露2000 h后焊缝和热影响区显微组织的OM像和SEM像
图3  GH3230合金填丝钨极氩弧焊接薄板经不同温度长期热暴露2000 h后焊缝区碳化物形貌及EDS分析
图4  GH3230合金填丝钨极氩弧焊接薄板经不同温度长期热暴露2000 h后热影响区碳化物形貌的SEM像
PointwCr / %wW / %wMo / %wCo / %wC / %wNi / %Carbide
pt 939.9018.872.530.901.9735.83(Cr, W)23C6
pt 1016.3555.382.861.022.1622.23(W, Cr)6C
pt 1143.5520.142.210.872.0531.18(Cr, W)23C6
pt 128.5259.554.830.751.1124.62W6C
pt 1352.7325.631.760.223.0516.61(Cr, W)23C6
pt 1416.5058.523.660.671.9718.68(W, Cr)6C
pt 1560.5723.021.330.582.9511.55(Cr, W)23C6
pt 1611.7264.313.590.882.5416.96W6C
表1  图4中点9~16的EDS分析结果
图5  GH3230合金填丝钨极氩弧焊接薄板经不同温度长期热暴露2000 h后焊缝区显微组织的BSE像及Cr、W元素EPMA面分布图
图6  GH3230合金填丝钨极氩弧焊接薄板经700 ℃长期热暴露2000 h后焊缝区碳化物形貌的TEM像、EDS元素面分布及选区电子衍射(SAED)花样
图7  GH3230合金填丝钨极氩弧焊接薄板经700 ℃长期热暴露2000 h后热影响区碳化物的TEM分析
图8  GH3230合金填丝钨极氩弧焊接薄板经不同温度长期热暴露1500和2000 h后焊缝区与热影响区碳化物中合金元素含量变化
图9  GH3230合金填丝钨极氩弧焊接薄板经不同温度热暴露2000 h后不同区域M23C6型碳化物的平均尺寸
[1] Wu G Z, Ding K, Qiao S F, et al. Weakening modes for the heat affected zone in Inconel 625 superalloy welded joints under different high temperature rupture conditions [J]. J. Mater. Res. Technol., 2021, 14: 2233
[2] Zhang D X, Liu D S, Zhu X P, et al. High-temperature properties and microstructure of argon-arc welded joint of GH3230 superalloy [J]. Mater. Mech. Eng., 2013, 37(12): 35
[2] 张冬旭, 刘大顺, 朱西平 等. GH3230高温合金氩弧焊接接头的组织与高温性能 [J]. 机械工程材料, 2013, 37(12): 35
[3] Wang W X, Li C W, Jiang L, et al. Evolution of carbide precipitates in Hastelloy N joints during welding and post weld heat treatment [J]. Mater. Charact., 2018, 135: 311
[4] Ren W J, Chen Y, Lan L, et al. Thermal exposure effect on the microstructural and mechanical properties of a laser-welded Inconel 617 joint in an air environment [J]. J. Mater. Eng. Perform., 2021, 30: 4328
[5] Tang Z W, Li J S, Hu R, et al. Effects of solution heat treatment on carbide of Ni-Cr-W superalloy [J]. Rare Met. Mater. Eng., 2010, 39: 1157
[6] Tan Q B, Zhu G L, Zhou W Z, et al. Precipitation, transformation, and coarsening of carbides in a high-carbon Ni-based superalloy during selective laser melting and hot isostatic pressing processes [J]. J. Alloys Compd., 2022, 913: 165196
[7] Song Z K, Liu Y F, Chen D Q, et al. Effect of heat treatment on microstructure and high temperature tensile mechanical properties of selective-laser-melted GH3230 superalloy [J]. Rare Met. Mater. Eng., 2022, 51: 2654
[7] 宋志坤, 刘元富, 陈德强 等. 热处理对选区激光熔化GH3230高温合金显微组织及高温拉伸力学性能的影响 [J]. 稀有金属材料与工程, 2022, 51: 2654
[8] Liu Y, Hu R, Li J S, et al. Deformation characteristics of as-received Haynes230 nickel base superalloy [J]. Mater. Sci. Eng., 2008, A497: 283
[9] Yang B, Shang Z, Ding J, et al. Investigation of strengthening mechanisms in an additively manufactured Haynes 230 alloy [J]. Acta Mater., 2022, 222: 117404
[10] Liu Y, Xiong J K, Zhao H Y, et al. Microstructure of laser-welded Hastelloy X and laser-welded Haynes 230 [J]. Trans. China Weld. Inst., 2017, 38(8): 82
[10] 刘 悦, 熊建坤, 赵海燕 等. Hastelloy X和Haynes 230激光焊接头的组织性能 [J]. 焊接学报, 2017, 38(8): 82
[11] Yu L, Cao R. Welding crack of Ni-based alloys: a review [J]. Acta Metall. Sin., 2021, 57: 16
doi: 10.11900/0412.1961.2020.00200
[11] 余 磊, 曹 睿. 镍基合金焊接裂纹研究现状 [J]. 金属学报, 2021, 57: 16
[12] Zhang Y L, Ju Q, Hu M, et al. Post weld heat treatment of GH3230 alloy [J]. Heat Treat. Met., 2021, 46(6): 116
doi: 10.13251/j.issn.0254-6051.2021.06.024
[12] 张勇路, 鞠 泉, 胡 曼 等. GH3230合金的焊后热处理 [J]. 金属热处理, 2021, 46(6): 116
doi: 10.13251/j.issn.0254-6051.2021.06.024
[13] Yin Y, Zhang L L, Li S T, et al. Study on crack of K438 superalloy repair welding joint after heat treatment [J]. Hot Work. Technol., 2017, 46(7): 243
[13] 尹 懿, 张丽玲, 李水涛 等. K438高温合金补焊接头热处理裂纹研究 [J]. 热加工工艺, 2017, 46(7): 243
[14] Taheri M, Halvaee A, Kashani-Bozorg S F. Effect of pre- and post-weld heat treatment on microstructure and mechanical properties of GTD-111 superalloy welds [J]. Met. Mater. Int., 2021, 27: 1173
[15] Fan X K, Li F Q, Liu L, et al. Evolution of γʹ particles in Ni-Based superalloy weld joint and its effect on impact toughness during long-term thermal exposure [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 561
[16] Du X L, Ju Q, Ma H P, et al. Precipitation behavior of M23C6 type carbides in GH3230 alloy [J]. Heat Treat. Met., 2021, 46(2): 50
[16] 杜星霖, 鞠 泉, 马惠萍 等. GH3230合金M23C6型碳化物的析出行为 [J]. 金属热处理, 2021, 46(2): 50
doi: 10.13251/j.issn.0254-6051.2021.02.009
[17] Sims C T, Stoloff N S, Hagel W C. Superalloys II [M]. New York: John Wiley & Sons, 1987: 97
[18] The Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook: Vol. 2: Wrought Superalloy and Casting Superalloy [M]. 2nd Ed., Beijing: Standards Press of China, 2002: 540
[18] 《中国航空材料手册》编辑委员会. 中国航空材料手册: 第二卷: 变形高温合金铸造高温合金 [M]. 第2版. 北京: 中国标准出版社, 2002: 540
[19] Guo J T. Review on whrought superalloy and equiaxed crystal cast superalloy materials and their application basic theories [J]. Acta Metall. Sin., 2010, 46: 1303
[19] 郭建亭. 变形高温合金和等轴晶铸造高温合金材料与应用基础理论研究 [J]. 金属学报, 2010, 46: 1303
[20] Liu J W, Luo C P, Xiao X L, et al. Evolution of carbide in 25-12 austenitic heatresistant cast steel during service [J]. Acta Metall. Sin., 2002, 38: 127
[20] 刘江文, 罗承萍, 肖晓玲 等. 25-12型奥氏体耐热铸钢长期服役过程中碳化物的演变现象 [J]. 金属学报, 2002, 38: 127
[21] Li Y Q. Reversible reaction between MC and M23C6 in a NiCrWTi cast superalloy [J]. Acta Metall. Sin., 1982, 18: 577
[21] 李玉清. NiCrWTi铸造高温合金中MC和M23C6的可逆反应 [J]. 金属学报, 1982, 18: 577
[22] Chen X F, Yao Z H, Dong J X, et al. The effect of stress on primary MC carbides degeneration of Waspaloy during long term thermal exposure [J]. J. Alloys Compd., 2018, 735: 928
[23] Inoue A, Masumoto T. Carbide reactions (M3C→M7C3M23C6M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels [J]. Metall. Trans., 1980: 11A: 739
[24] Exner H E. Analysis of grain- and particle-size distributions in metallic materials [J]. Int. Metall. Rev., 1972, 17: 25
[25] Beckitt F R, Clark B R. The shape and mechanism of formation of M23C6 carbide in austenite [J]. Acta Metall., 1967, 15: 113
[26] Rai R K. Slip localization and Cr23C6 carbide formation during low cycle fatigue of a polycrystalline nickel-base superalloy [J]. Mater. Chem. Phys., 2022, 291: 126780
[27] Jo T S, Lim J H, Kim Y D. Dissociation of Cr-rich M23C6 carbide in Alloy 617 by severe plastic deformation [J]. J. Nucl. Mater., 2010, 406: 360
[28] Liu J W, Jiao D L, Luo C P. Microstructural evolution in austenitic heat-resistant cast steel 35Cr25Ni12NNbRE during long-term service [J]. Mater. Sci. Eng., 2010, A527: 2772
[29] Xiao X. Optimization design and structure property of 12%Cr reduced activation ferritic/martensitic steel [D]. Beijing: University of Science and Technology Beijing, 2013
[29] 肖 翔. 12%Cr低活性F/M钢的优化设计及组织性能研究 [D]. 北京: 北京科技大学, 2013
[30] Zhang T H, Ju Q, Meng Z B, et al. Microstructure and properties of GH3230 welded plates after long-term heat exposure treatment [J]. Rare Met. Mater. Eng., 2023, 52: 2573
[30] 张天昊, 鞠 泉, 蒙肇斌 等. GH3230合金焊接板材长期热暴露后组织和性能研究 [J]. 稀有金属材料与工程, 2023, 52: 2573
[1] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[2] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[3] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[4] 赵广迪, 李阳, 姚晓雨, 王亮, 李渭滨, 潘玉华, 李维娟, 王兆宇. BFe-Cr-B-C合金凝固行为、强韧性及耐磨性的影响[J]. 金属学报, 2025, 61(5): 699-716.
[5] 周任远, 朱丽慧. Inconel 740H焊接接头不同温度蠕变后 γ贫化区的形成及其对力学性能的影响[J]. 金属学报, 2025, 61(5): 744-756.
[6] 梁炫, 侯廷平, 张东, 谭昕暘, 吴开明. 中碳Nb合金化钢液析碳化物的析出行为[J]. 金属学报, 2025, 61(4): 653-664.
[7] 马芳, 陆星宇, 周丽娜, 杜宁宇, 类承帅, 刘宏伟, 李殿中. M50钢中 M2C一次碳化物高温转变机制[J]. 金属学报, 2024, 60(7): 901-914.
[8] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[9] 余华, 李昕, 江河, 姚志浩, 董建新. 碳化物特征对GH3536合金冷变形损伤的影响及控制[J]. 金属学报, 2024, 60(4): 464-472.
[10] 白菊菊, 李健健, 付崇龙, 陈双建, 李志军, 林俊. GH3535合金焊缝高温氦离子辐照效应[J]. 金属学报, 2024, 60(3): 299-310.
[11] 侯志远, 刘威峰, 徐斌, 孙明月, 时婧, 任少飞. M50轴承钢热变形过程中孔洞形成及演化机制[J]. 金属学报, 2024, 60(1): 57-68.
[12] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[13] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[14] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[15] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.