Please wait a minute...
金属学报  2019, Vol. 55 Issue (1): 149-159    DOI: 10.11900/0412.1961.2018.00220
  本期目录 | 过刊浏览 |
SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究
王晨1,2, 王贝贝2,3, 薛鹏2(), 王东2, 倪丁瑞2, 陈礼清1, 肖伯律2, 马宗义2
1 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
2 中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016
3 东北大学材料科学与工程学院 沈阳 110819
Fatigue Behavior of Friction Stir Welded SiCp/6092Al Composite
Chen WANG1,2, Beibei WANG2,3, Peng XUE2(), Dong WANG2, Dingrui NI2, Liqing CHEN1, Bolü XIAO2, Zongyi MA2
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Chinal
3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
Chen WANG, Beibei WANG, Peng XUE, Dong WANG, Dingrui NI, Liqing CHEN, Bolü XIAO, Zongyi MA. Fatigue Behavior of Friction Stir Welded SiCp/6092Al Composite[J]. Acta Metall Sin, 2019, 55(1): 149-159.

全文: PDF(10833 KB)   HTML
摘要: 

为获得高质量、疲劳性能优异的SiCp/6092Al复合材料搅拌摩擦焊接头,对3 mm厚的T6态SiCp/6092Al复合材料轧制板材分别在50 mm/min的低焊速和800 mm/min的高焊速下进行搅拌摩擦焊接,转速恒为1000 r/min,研究焊速对接头的组织演变及拉伸性能、高周疲劳性能的影响。结果表明,高焊速接头表面“鱼鳞纹”较明显,且横截面方向的焊核区形貌与低焊速接头具有一定差异。焊速增加显著提高了FSW接头的硬度和拉伸强度,而对于未打磨表面的接头却未能提高接头的疲劳极限,低焊速下接头的高周疲劳极限为150 MPa,高焊速下接头的高周疲劳极限降为140 MPa。不同循环应力加载下,试样表现出不同的断裂方式。高应力下,低焊速接头由表面“鱼鳞纹”凹痕引起疲劳断裂,而高焊速接头是由焊核区底部的涡旋区流动不充分引起断裂。在低应力下,未打磨试样均由接头表面“鱼鳞纹”凹痕引起疲劳断裂,三维表面形貌显示高焊速接头表面粗糙度较大是造成疲劳极限较低的原因。与未打磨试样相比,经过打磨抛光后的接头光滑表面试样的疲劳极限提高了40~65 MPa,且高焊速下的光滑试样表现出更高的疲劳极限(205 MPa),光滑表面接头在疲劳测试时均在最低硬度区及其附近区域发生断裂。

关键词 铝基复合材料搅拌摩擦焊接高焊速高周疲劳    
Abstract

Al matrix composites (AMCs) have been used in the aerospace and automotive industries due to the desirable properties including high specific strength, superior wear resistance and low thermal expansion. However, the traditional fusion welding process of AMCs usually brings defects such as pores, particles segregation and detrimental phases, which limits the application of AMCs. So more and more attentions are paied on friction stir welding (FSW), a solid state welding method possessing great potential in the welding of AMCs. In this work, to acquire high quality and excellent fatigue property of friction stir welded SiCp/6092Al composite joint, 3 mm-thick rolled SiCp/6092Al composite plates with T6 state were conducted by FSW at a constant rotational rate of 1000 r/min, and at a low welding speed of 50 mm/min and a high welding speed of 800 mm/min, respectively. Microstructure evolution, mechanical properties and high cycle fatigue behavior of the FSW joints were evaluated. The results showed that high welding speed resulted in a much rougher surface of scale-like ripple and the morphology of the nugget zone was different from that of the joint at low welding speed. Significant enhancement of the hardness and tensile strength were achieved in the joints at the high welding speed, but the fatigue properties were not improved for the joints with unpolished surfaces. The fatigue limit of the joint at low welding speed was 150 MPa, however the fatigue limit reduced to 140 MPa at the high welding speed. For the joints with polished surfaces, obviously enhanced fatigue limit was achieved at the high welding speed of 800 mm/min compared to that of the joint at the low welding speed of 50 mm/min. Different fracture characteristics were observed in the specimens with unpolished surfaces at various cyclic stress loading. Under a low cyclic stress loading, crack initiated at the scale-like ripple on the surface of the specimen; under a high cyclic stress loading, crack also initiated at the scale-like ripple at the low welding speed, while the crack initiated at the swirl zone in the bottom of the nugget zone at the high welding speed. The results of three-dimension surface topography showed that a large surface roughness was achieved on the surface of the joint at the high welding speed, resulting in lower fatigue limit compared to that of the joint at the low welding speed. For the specimens with polished surfaces, the fatigue limit was improved by 40~65 MPa compared to that of the specimens with unpolished surfaces. In this case, a high fatigue limit of 205 MPa was obtained in the joint at the high welding speed of 800 mm/min, and all the specimens failed at the lowest hardness zone and nearby.

Key wordsaluminum matrix composite    friction stir welding    high welding speed    high cycle fatigue
收稿日期: 2018-05-22     
ZTFLH:  TB333  
基金资助:国家重点研发计划项目No.2017YFB0703104及国家自然科学基金项目Nos.U1508216、51331008和51671191
作者简介:

作者简介 王晨,女,1988年生,博士

图1  FSW接头的宏观形貌
图2  SiCp/6092Al复合材料母材及FSW接头焊核区的微观组织
图3  FSW接头横截面的硬度分布
Sample Yield strength MPa Ultimate tensile strength / MPa Elongation
%
Joint efficiency
%
Fracture location
1000-50 236±3 310±3 5.5±0.3 63 LHZ
1000-800 262±3 355±5 3.8±0.5 72 LHZ
BM 413±3 490±2 8.0±0.5 - -
表1  FSW接头的拉伸性能及断裂位置
图4  未打磨疲劳试样的S-N曲线
图5  不同加载应力时未打磨疲劳试样在不同焊速下的断裂位置
图6  50 mm/min焊速下,未打磨试样在150 MPa应力加载下的断口形貌
图7  800 mm/min焊速下,表面未打磨试样在不同应力加载下的断口形貌
图8  光滑表面试样的S-N曲线
图9  不同焊速下光滑表面疲劳试样的断后形貌
图10  光滑表面试样的疲劳断口SEM像
图11  光滑试样在沿着疲劳加载方向上的断口形貌SEM像
图12  FSW焊缝表面轮廓形貌
Sample 2b / μm a (Ra) / μm H / HV Predicted fatigue limit MPa Experimental fatigue limit / MPa
1000-50 42.74 12.37 105 146 150
1000-800 821.28 26.12 120 138 140
表2  预测疲劳极限及实际疲劳极限对比
图13  FSW过程中工具位置和材料流变示意图
[1] Uluk?y A.Pulsed metall inert gas (MIG) welding and its effects on the microstructure and element distribution of an aluminum matrix reinforced with SiC composite material[J]. Materialwiss. Werkstofftech., 2017, 48: 163
[2] Dai J, Liu Z, Yang L, et al.Research on pulsed laser welding of TiB2-enhanced aluminum matrix composites[J]. Int. J. Adv. Manuf. Tech., 2016, 85: 157
[3] Xue P, Ni D R, Wang D, et al.Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al-Cu joints[J]. Mater. Sci. Eng., 2011, A528: 4683
[4] Wang G Q, Zhao Y H, Hao Y F.Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing[J]. J. Mater. Sci. Technol., 2018, 34: 73
[5] Shang Q, Ni D R, Xue P, et al.Improving joint performance of friction stir welded wrought Mg alloy by controlling non-uniform deformation behavior[J]. Mater. Sci. Eng., 2017, A707: 426
[6] Xue P, Xiao B L, Zhang Q, et al.Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling[J]. Scr. Mater., 2011, 64: 1051
[7] Jiang X Q, Wynne B P, Martin J.Variant selection in stationary shoulder friction stir welded Ti-6Al-4V alloy[J]. J. Mater. Sci. Technol., 2018, 34: 198
[8] Reynolds A P, Tang W, Gnaupel-Herold T, et al.Structure, properties, and residual stress of 304L stainless steel friction stir welds[J]. Scr. Mater., 2003, 48: 1289
[9] Wu L H, Nagatsuka K, Nakata K.Achieving superior mechanical properties in friction lap joints of copper to carbon-fiber-reinforced plastic by tool offsetting[J]. J. Mater. Sci. Technol., 2018, 34: 1628
[10] Feng A H, Xiao B L, Ma Z Y.Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite[J]. Compos. Sci. Technol., 2008, 68: 2141
[11] Wang D, Wang Q Z, Xiao B L, et al.Effect of heat treatment before welding on microstructure and mechanical properties of friction stir welded SiCp/Al-Cu-Mg composite joints[J]. Acta Metall. Sin., 2014, 50: 489(王东, 王全兆, 肖伯律等. 焊前热处理状态对SiCp/Al-Cu-Mg复合材料搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2014, 50: 489)
[12] Sato Y S, Kokawa H, Enomoto M, et al.Microstructural evolution of 6063 aluminum during friction-stir welding[J]. Metall. Mater. Trans., 1999, 30A: 2429
[13] Wang B B, Chen F F, Liu F, et al.Enhanced Mechanical properties of friction stir welded 5083Al-H19 joints with additional water cooling[J]. J. Mater. Sci. Technol., 2017, 33: 1009
[14] Dong P, Li H M, Sun D Q, et al.Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy[J]. Mater. Des., 2013, 45: 524
[15] Li Y Z, Wang Q Z, Xiao B L, et al.Effect of welding parameters and B4C contents on the microstructure and mechanical properties of friction stir welded B4C/6061Al joints[J]. J. Mater. Process. Technol., 2018, 251: 305
[16] Ceschini L, Boromei I, Minak G, et al.Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite[J]. Compos. Sci. Technol., 2007, 67: 605
[17] Wang D, Wang Q Z, Xiao B L, et al.Achieving friction stir welded SiCp/Al-Cu-Mg composite joint of nearly equal strength to base material at high welding speed[J]. Mater. Sci. Eng., 2014, A589: 271
[18] Pirondi A, Collini L.Analysis of crack propagation resistance of Al-Al2O3 particulate-reinforced composite friction stir welded butt joints[J]. Int. J. Fatigue, 2009, 31: 111
[19] Ni D R, Chen D L, Xiao B L, et al.Residual stresses and high cycle fatigue properties of friction stir welded SiCp/AA2009 composites[J]. Int. J. Fatigue, 2013, 55: 64
[20] Minak G, Ceschini L, Boromei I, et al.Fatigue properties of friction stir welded particulate reinforced aluminium matrix composites[J]. Int. J. Fatigue, 2010, 32: 218
[21] James M N, Bradley G R, Lombard H, et al.The relationship between process mechanisms and crack paths in friction stir welded 5083-H321 and 5383-H321 aluminium alloys[J]. Fatigue Fract. Eng. Mater. Struct., 2005, 28: 245
[22] Chen X G, da Silva M, Gougeon P, et al. Microstructure and mechanical properties of friction stir welded AA6063-B4C metal matrix composites[J]. Mater. Sci. Eng., 2009, A518: 174
[23] Liu F J, Fu L, Chen H Y.Microstructures and mechanical properties of thin plate aluminium alloy joint prepared by high rotational speed friction stir welding[J]. Acta Metall. Sin., 2017, 53: 1651(刘奋军, 傅莉, 陈海燕. 铝合金薄板高转速搅拌摩擦焊接头组织与力学性能[J]. 金属学报, 2017, 53: 1651)
[24] Liu F C, Ma Z Y.Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy[J]. Metall. Mater. Trans., 2008, 39A: 2378
[25] Frigaard ?, Grong ?, Midling O T.A process model for friction stir welding of age hardening aluminum alloys[J]. Metall. Mater. Trans., 2001, 32A: 1189
[26] Schmidt H, Hattel J.A local model for the thermomechanical conditions in friction stir welding[J]. Model. Simul. Mater. Sci. Eng., 2005, 13: 77
[27] Kim J H, Barlat F, Kim C, et al.Themo-mechanical and microstructural modeling of friction stir welding of 6111-T4 aluminum alloys[J]. Metall. Mater. Int., 2009, 15: 125
[28] Zeng X H, Xue P, Wang D, et al.Realising equal strength welding to parent metal in precipitation-hardened Al-Mg-Si alloy via low heat input friction stir welding[J]. Sci. Technol. Weld. Joining, 2018, 23: 478
[29] Suresh S.Fatigue of Materials [M]. 2nd Ed., Cambridge: Cambridge University Press, 1998: 259
[30] Zhang Z, Xiao B L, Wang D, et al.Effect of alclad layer on material flow and defect formation in friction-stir-welded 2024 aluminum alloy[J]. Metall. Mater. Trans., 2011, 42A: 1717
[31] Proudhon H, Fouvry S, Buffiere J Y.A fretting crack initiation prediction taking into account the surface roughness and the crack nucleation process volume[J]. Int. J. Fatigue, 2005, 27: 569
[32] Murakami Y, Endo M.Effects of defects, inclusions and inhomogeneities on fatigue strength[J]. Int. J. Fatigue, 1994, 16: 163
[33] Itoga H, Tokaji K, Nakajima M, et al.Effect of surface roughness on step-wise S-N characteristics in high strength steel[J]. Int. J. Fatigue, 2003, 25: 379
[34] Arbegast W J.A flow-partitioned deformation zone model for defect formation during friction stir welding[J]. Scr. Mater., 2008, 58: 372
[35] Arbegast W J.Modeling friction stir joining as a metalworking process [A]. Hot Deformation of Aluminum Alloys III[C]. San Diego: Wiey-TMS, 2003: 313
[36] Dickerson T L, Przydatek J.Fatigue of friction stir welds in aluminium alloys that contain root flaws[J]. Int. J. Fatigue, 2003, 25: 1399
[37] Zhou L, Wang T, Zhou W L, et al.Microstructural characteristics and mechanical properties of 7050-T7451 aluminum alloy friction stir-welded joints[J]. J. Mater. Eng. Perform., 2016, 25: 2542
[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[3] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[4] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[5] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[6] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[7] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[8] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[9] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[10] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[11] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[12] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[13] 丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.
[14] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
[15] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.