|
|
利用热轧制-剪切-弯曲工艺及退火调控Mg-Al-Zn-Mn-Ca 镁合金的织构 |
游云翔1, 谭力1,2( ), 高静静1, 周涛1( ), 周志明1 |
1 重庆理工大学 材料科学与工程学院 重庆 400054 2 重庆渝江压铸股份有限公司 重庆 400000 |
|
Controlling the Texture of Mg-Al-Zn-Mn-Ca Magnesium Alloy by Hot Rolling-Shearing-Bending Process and Annealing |
YOU Yunxiang1, TAN Li1,2( ), GAO Jingjing1, ZHOU Tao1( ), ZHOU Zhiming1 |
1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China 2 Chongqing Yujiang Die-Casting Co. Ltd., Chongqing 400000, China |
引用本文:
游云翔, 谭力, 高静静, 周涛, 周志明. 利用热轧制-剪切-弯曲工艺及退火调控Mg-Al-Zn-Mn-Ca 镁合金的织构[J]. 金属学报, 2025, 61(6): 866-874.
Yunxiang YOU,
Li TAN,
Jingjing GAO,
Tao ZHOU,
Zhiming ZHOU.
Controlling the Texture of Mg-Al-Zn-Mn-Ca Magnesium Alloy by Hot Rolling-Shearing-Bending Process and Annealing[J]. Acta Metall Sin, 2025, 61(6): 866-874.
1 |
Deswal N, Kant R. Machinability and surface integrity analysis of magnesium AZ31B alloy during laser assisted turning [J]. J. Manuf. Processes, 2023, 101: 527
|
2 |
Zhang Y, Shao J B, Chen T, et al. Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multi-directional forging [J]. Acta Metall. Sin., 2020, 56: 723
doi: 10.11900/0412.1961.2019.00292
|
2 |
张 阳, 邵建波, 陈 韬 等. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶 [J]. 金属学报, 2020, 56: 723
|
3 |
Zhang J Y, Miao J S, Balasubramani N, et al. Magnesium research and applications: Past, present and future [J]. J. Magnes. Alloy., 2023, 11: 3867
|
4 |
Gao Y P, Zhao L, Zha M, et al. Twinning-induced plasticity with multiple twinning modes and disclinations in Mg alloys [J]. Int. J. Plast., 2023, 164: 103595
|
5 |
Abdelgaliel I H, Bakr M A, Elkhodary K I, et al. Experimental and computational investigation of Mg AZ31 grain refinement by shear-enhanced rolling [J]. Mater. Today Commun., 2023, 35: 106362
|
6 |
Luo A A, Shi R H, Miao J S, et al. Review: Magnesium sheet alloy development for room temperature forming [J]. JOM, 2021, 73: 1403
|
7 |
Hou X L, Zhai Y X, Zhang P, et al. Rare earth texture analysis of rectangular extruded Mg alloys and a comparison of different alloying adding ways [J]. Rare. Met., 2016, 35: 850
|
8 |
Zeng Z R, Bian M Z, Xu S W, et al. Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet [J]. Mater. Sci. Eng., 2016, A674: 459
|
9 |
Bian M Z, Sasaki T T, Suh B C, et al. A heat-treatable Mg-Al-Ca-Mn-Zn sheet alloy with good room temperature formability [J]. Scr. Mater., 2017, 138: 151
|
10 |
Wang Q H, Jiang B, Liu L T, et al. Reduction per pass effect on texture traits and mechanical anisotropy of Mg-Al-Zn-Mn-Ca alloy subjected to unidirectional and cross rolling [J]. J. Mater. Res. Technol., 2020, 9: 9607
|
11 |
Li Z H, Sasaki T T, Bian M Z, et al. Role of Zn on the room temperature formability and strength in Mg-Al-Ca-Mn sheet alloys [J]. J. Alloys Compd., 2020, 847: 156347
|
12 |
Song D H, Zhou T, Tu J, et al. Improved stretch formability of AZ31 sheet via texture control by introducing a continuous bending channel into equal channel angular rolling [J]. J. Mater. Process. Technol., 2018, 259: 380
|
13 |
Nakata T, Kamado S. Towards tailoring basal texture of rolled Mg alloy sheet by recrystallization for high room-temperature formability: A review [J]. J. Magnes. Alloy., 2023, 11: 3992
|
14 |
Shi L X, Hu L, Lv H Y, et al. Microstructure and texture evolution of AZ31 magnesium alloy thin sheet processed by hot-rolling-shearing-bending [J]. Met. Mater. Int., 2022, 28: 1224
|
15 |
Wang L J, Hu L, Miao T H, et al. Effect of pre-deformation on mechanical behavior and microstructure evolution of AZ31 Mg alloy sheet with bimodal non-basal texture at room temperature [J]. Acta Metall. Sin., 2024, 60: 881
doi: 10.11900/0412.1961.2022.00634
|
15 |
汪丽佳, 胡 励, 苗天虎 等. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响 [J]. 金属学报, 2024, 60: 881
doi: 10.11900/0412.1961.2022.00634
|
16 |
You Y X, Tan L, Yan Y Q, et al. Microstructure evolution and twinning behavior of AZ31 magnesium alloy sheets with bimodal texture during cold deep-drawing deformation [J]. Mater. Today Commun., 2024, 39: 109343
|
17 |
Yu H H, Xin Y C, Cheng Y, et al. The different hardening effects of tension twins on basal slip and prismatic slip in Mg alloys [J]. Mater. Sci. Eng., 2017, A700: 695
|
18 |
Li X, Qi W. Effect of initial texture on texture and microstructure evolution of ME20 Mg alloy subjected to hot rolling [J]. Mater. Sci. Eng., 2013, A560: 321
|
19 |
Huang X S, Suzuki K, Chino Y. Annealing behaviour of Mg-3Al-1Zn alloy sheet obtained by a combination of high-temperature rolling and subsequent warm rolling [J]. J. Alloys Compd., 2011, 509: 4854
|
20 |
Go J B, Lee J U, Moon B G, et al. Improvement in mechanical properties of rolled AZ31 alloy through combined addition of Ca and Gd [J]. Met. Mater. Int., 2020, 26: 1779
|
21 |
Han G K, Park H K, Kim H K, et al. Local and global deformation behaviour in rolled pure magnesium sheets at room temperature under different strain rates [J]. Mater. Sci. Eng., 2019, A762: 138110
|
22 |
Wang Q H, Jiang B, Tang A T, et al. Formation of the elliptical texture and its effect on the mechanical properties and stretch formability of dilute Mg-Sn-Y sheet by Zn addition [J]. Mater. Sci. Eng., 2019, A746: 259
|
23 |
Wang Q H, Jiang B, Tang A T, et al. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy [J]. J. Mater. Sci. Technol., 2020, 43: 104
doi: 10.1016/j.jmst.2020.01.018
|
24 |
Zhou H T, Kong F T, Wu K, et al. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties [J]. Mater. Des., 2017, 121: 202
|
25 |
Song B, Xin R L, Guo N, et al. Influence of basal slip activity in twin lamellae on mechanical behavior of Mg alloys [J]. Mater. Lett., 2016, 176: 147
|
26 |
Jiang L, Jonas J J, Mishra R K, et al. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths [J]. Acta Mater., 2007, 55: 3899
|
27 |
Wu Y S, Liu Z, Qin X Z, et al. Effect of initial state on hot deformation and dynamic recrystallization of Ni-Fe based alloy GH984G for steam boiler applications [J]. J. Alloys Compd., 2019, 795: 370
|
28 |
Basu I, Al-Samman T. Twin recrystallization mechanisms in magnesium-rare earth alloys [J]. Acta Mater., 2015, 96: 111
|
29 |
Pantleon W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction [J]. Scr. Mater., 2008, 58: 994
|
30 |
Wang J, Beyerlein I J. Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals [J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 024002
|
31 |
Zhang J, Dou Y C, Dong H B. Intrinsic ductility of Mg-based binary alloys: A first-principles study [J]. Scr. Mater., 2014, 89: 13
|
32 |
Griffiths D. Explaining texture weakening and improved formability in magnesium rare earth alloys [J]. Mater. Sci. Technol., 2015, 31: 10
|
33 |
Guan D K, Mark Rainforth W, Ma L, et al. Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy [J]. Acta Mater., 2017, 126: 132
|
34 |
Drouven C, Basu I, Al-Samman T, et al. Twinning effects in deformed and annealed magnesium-neodymium alloys [J]. Mater. Sci. Eng., 2015, A647: 91
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|