Please wait a minute...
金属学报  2025, Vol. 61 Issue (6): 866-874    DOI: 10.11900/0412.1961.2024.00187
  研究论文 本期目录 | 过刊浏览 |
利用热轧制-剪切-弯曲工艺及退火调控Mg-Al-Zn-Mn-Ca 镁合金的织构
游云翔1, 谭力1,2(), 高静静1, 周涛1(), 周志明1
1 重庆理工大学 材料科学与工程学院 重庆 400054
2 重庆渝江压铸股份有限公司 重庆 400000
Controlling the Texture of Mg-Al-Zn-Mn-Ca Magnesium Alloy by Hot Rolling-Shearing-Bending Process and Annealing
YOU Yunxiang1, TAN Li1,2(), GAO Jingjing1, ZHOU Tao1(), ZHOU Zhiming1
1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2 Chongqing Yujiang Die-Casting Co. Ltd., Chongqing 400000, China
引用本文:

游云翔, 谭力, 高静静, 周涛, 周志明. 利用热轧制-剪切-弯曲工艺及退火调控Mg-Al-Zn-Mn-Ca 镁合金的织构[J]. 金属学报, 2025, 61(6): 866-874.
Yunxiang YOU, Li TAN, Jingjing GAO, Tao ZHOU, Zhiming ZHOU. Controlling the Texture of Mg-Al-Zn-Mn-Ca Magnesium Alloy by Hot Rolling-Shearing-Bending Process and Annealing[J]. Acta Metall Sin, 2025, 61(6): 866-874.

全文: PDF(2640 KB)   HTML
摘要: 

热轧制后的Mg-Al-Zn-Mn-Ca镁合金具有椭圆形织构特征。为解决该合金成形过程中展现出的对称性不足等问题,本工作通过热轧制-剪切-弯曲(HRSB)工艺,优化了Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的织构,进而改善了材料的室温各向异性。利用EBSD和XRD等表征技术,系统研究了Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材在退火过程中的微观结构演化和非基面织构形成机理。结果表明,热轧制后退火温度高于350 ℃时,板材开始表现出沿横向(TD)扩展的椭圆形织构。剪切-弯曲及400 ℃退火处理后,变形过程产生的{101¯2}拉伸孪晶界未发生明显静态再结晶,导致20°~70°范围内对称织构的组分增大,甚至形成一种环形织构。当退火温度升高到450 ℃时,Mg-2Al-2Zn-0.4Mn-0.5Ca合金中基本无法观察到{101¯2}拉伸孪晶,析出相数量增多,再结晶过程中取向随机的晶粒形核,导致环形织构特征消失。HRSB变形过程中,锥面<c + a>滑移被大量激活,成为几何必需位错的主要组成部分。Al、Ca等元素在晶界处共偏析引发的新低能晶界以及非基面滑移导致的取向梯度共同促进了非基面织构的形成。

关键词 Mg-Al-Zn-Mn-Ca 镁合金非基面织构热轧制多尺度表征结构演化    
Abstract

The Mg-Al-Zn-Mn-Ca magnesium alloy, after hot rolling, forms an elliptical texture, providing good application prospects. However, challenges such as poor symmetry, similar to basal textures, persist in elliptical texture formation. This study explores optimizing the texture of Mg-2Al-02Zn-0.4Mn-0.5Ca Mg alloy sheets using a hot rolling-shearing-bending (HRSB) treatment to improve their room temperature mechanical properties. The research systematically investigates structural evolution during the annealing process and the mechanism behind nonbasal texture formation, using EBSD, XRD, and other characterization techniques. The results show that after annealing at temperatures above 350 oC following hot rolling, the sheets develop an elliptical texture extending toward the transverse direction (TD). Following HRSB treatment and annealing at 400 oC annealing, the {101¯2} extension twins generated during deformation remain uncrystallized, leading to an increase in the relatively symmetrical texture components between 20° and 70°. This also results in the formation of a ring texture. However, as the annealing temperature increases to 450 oC, the {101¯2} extension twins nearly disappear, precipitation phases increase, and the nucleation of randomly oriented grains during recrystallization causes the circular texture characteristics to disappear. During the HRSB deformation process, the pyramidal <c + a> slip becomes significantly activated, dominating the primary dislocation density. The low-energy grain boundaries caused by the co-segregation of Al and Ca atoms at the grain boundaries, as well as the orientation gradient induced by the non-basal slip, jointly contribute to the formation of the non-basal texture.

Key wordsMg-Al-Zn-Mn-Ca magnesium alloy    non-basal texture    hot rolling    multi-scale characterization    structural evolution
收稿日期: 2024-06-03     
ZTFLH:  TG146.22  
基金资助:国家自然科学基金项目(51901030);国家自然科学基金项目(52274374);重庆市自然科学基金项目(cstc2020jcyj-msxmX0877);重庆市教育委员会科学技术研究项目(KJQN202201160);重庆理工大学科研创新团队培育计划项目(2023TDZ010);重庆人力资源和社会保障局博士后研究项目(2022CQBSHTB3110)
通讯作者: 谭 力,tanli@cqut.edu.cn,主要从事材料表征以及合金疲劳断裂相关研究;
周 涛,zt19811118@cqut.edu.cn,主要从事镁合金特种加工工艺及变形行为研究
Corresponding author: TAN Li, associate professor, Tel: 13983472537, E-mail: tanli@cqut.edu.cn;
ZHOU Tao, professor, Tel: 18696698252, E-mail: zt19811118@cqut.edu.cn
作者简介: 游云翔,男,2000年生,硕士生
图1  热轧制前铸态Mg-2Al-2Zn-0.4Mn-0.5Ca 镁合金薄片的宏观形貌
图2  热轧制及退火态Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的织构演化
图3  不同退火温度下热轧制-剪切-弯曲(HRSB)处理后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的微观组织
图4  HRSB工艺处理后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材在不同退火温度下的晶粒取向分布(GOS)图
图5  HRSB处理及400 ℃退火1 h后,非基面织构Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材沿不同方向拉伸后的室温真应力-应变曲线
Loading direction

YS

MPa

UTS

MPa

FE

%

YS /

UTS

RD11223220.90.483
TD9520117.30.472
表1  沿不同方向拉伸后试样的室温力学性能
图6  HRSB处理及400 ℃退火1 h后,非基面织构Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材沿不同方向拉伸后的室温加工硬化曲线
图7  拉伸前非基面织构Mg-2Al-2Zn-0.4Mn-0.5Ca 镁合金板材沿不同方向滑移系统的Schmid因子(SF)分布
图8  400 ℃退火1 h后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的电子背散射衍射(EBSD)像以及孪晶与相应基体的几何位置关系
图9  图8所示区域的晶界图及局部取向差(KAM)图
图10  图4所示区域非基面织构Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材各滑移系统的几何必需位错(GND)密度估算值分布
图11  HRSB处理及400 ℃退火1 h后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材中8种特殊晶界的旋转轴分布图
图12  不同退火温度后非基面织构Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的织构组分分布
1 Deswal N, Kant R. Machinability and surface integrity analysis of magnesium AZ31B alloy during laser assisted turning [J]. J. Manuf. Processes, 2023, 101: 527
2 Zhang Y, Shao J B, Chen T, et al. Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multi-directional forging [J]. Acta Metall. Sin., 2020, 56: 723
doi: 10.11900/0412.1961.2019.00292
2 张 阳, 邵建波, 陈 韬 等. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶 [J]. 金属学报, 2020, 56: 723
3 Zhang J Y, Miao J S, Balasubramani N, et al. Magnesium research and applications: Past, present and future [J]. J. Magnes. Alloy., 2023, 11: 3867
4 Gao Y P, Zhao L, Zha M, et al. Twinning-induced plasticity with multiple twinning modes and disclinations in Mg alloys [J]. Int. J. Plast., 2023, 164: 103595
5 Abdelgaliel I H, Bakr M A, Elkhodary K I, et al. Experimental and computational investigation of Mg AZ31 grain refinement by shear-enhanced rolling [J]. Mater. Today Commun., 2023, 35: 106362
6 Luo A A, Shi R H, Miao J S, et al. Review: Magnesium sheet alloy development for room temperature forming [J]. JOM, 2021, 73: 1403
7 Hou X L, Zhai Y X, Zhang P, et al. Rare earth texture analysis of rectangular extruded Mg alloys and a comparison of different alloying adding ways [J]. Rare. Met., 2016, 35: 850
8 Zeng Z R, Bian M Z, Xu S W, et al. Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet [J]. Mater. Sci. Eng., 2016, A674: 459
9 Bian M Z, Sasaki T T, Suh B C, et al. A heat-treatable Mg-Al-Ca-Mn-Zn sheet alloy with good room temperature formability [J]. Scr. Mater., 2017, 138: 151
10 Wang Q H, Jiang B, Liu L T, et al. Reduction per pass effect on texture traits and mechanical anisotropy of Mg-Al-Zn-Mn-Ca alloy subjected to unidirectional and cross rolling [J]. J. Mater. Res. Technol., 2020, 9: 9607
11 Li Z H, Sasaki T T, Bian M Z, et al. Role of Zn on the room temperature formability and strength in Mg-Al-Ca-Mn sheet alloys [J]. J. Alloys Compd., 2020, 847: 156347
12 Song D H, Zhou T, Tu J, et al. Improved stretch formability of AZ31 sheet via texture control by introducing a continuous bending channel into equal channel angular rolling [J]. J. Mater. Process. Technol., 2018, 259: 380
13 Nakata T, Kamado S. Towards tailoring basal texture of rolled Mg alloy sheet by recrystallization for high room-temperature formability: A review [J]. J. Magnes. Alloy., 2023, 11: 3992
14 Shi L X, Hu L, Lv H Y, et al. Microstructure and texture evolution of AZ31 magnesium alloy thin sheet processed by hot-rolling-shearing-bending [J]. Met. Mater. Int., 2022, 28: 1224
15 Wang L J, Hu L, Miao T H, et al. Effect of pre-deformation on mechanical behavior and microstructure evolution of AZ31 Mg alloy sheet with bimodal non-basal texture at room temperature [J]. Acta Metall. Sin., 2024, 60: 881
doi: 10.11900/0412.1961.2022.00634
15 汪丽佳, 胡 励, 苗天虎 等. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响 [J]. 金属学报, 2024, 60: 881
doi: 10.11900/0412.1961.2022.00634
16 You Y X, Tan L, Yan Y Q, et al. Microstructure evolution and twinning behavior of AZ31 magnesium alloy sheets with bimodal texture during cold deep-drawing deformation [J]. Mater. Today Commun., 2024, 39: 109343
17 Yu H H, Xin Y C, Cheng Y, et al. The different hardening effects of tension twins on basal slip and prismatic slip in Mg alloys [J]. Mater. Sci. Eng., 2017, A700: 695
18 Li X, Qi W. Effect of initial texture on texture and microstructure evolution of ME20 Mg alloy subjected to hot rolling [J]. Mater. Sci. Eng., 2013, A560: 321
19 Huang X S, Suzuki K, Chino Y. Annealing behaviour of Mg-3Al-1Zn alloy sheet obtained by a combination of high-temperature rolling and subsequent warm rolling [J]. J. Alloys Compd., 2011, 509: 4854
20 Go J B, Lee J U, Moon B G, et al. Improvement in mechanical properties of rolled AZ31 alloy through combined addition of Ca and Gd [J]. Met. Mater. Int., 2020, 26: 1779
21 Han G K, Park H K, Kim H K, et al. Local and global deformation behaviour in rolled pure magnesium sheets at room temperature under different strain rates [J]. Mater. Sci. Eng., 2019, A762: 138110
22 Wang Q H, Jiang B, Tang A T, et al. Formation of the elliptical texture and its effect on the mechanical properties and stretch formability of dilute Mg-Sn-Y sheet by Zn addition [J]. Mater. Sci. Eng., 2019, A746: 259
23 Wang Q H, Jiang B, Tang A T, et al. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy [J]. J. Mater. Sci. Technol., 2020, 43: 104
doi: 10.1016/j.jmst.2020.01.018
24 Zhou H T, Kong F T, Wu K, et al. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties [J]. Mater. Des., 2017, 121: 202
25 Song B, Xin R L, Guo N, et al. Influence of basal slip activity in twin lamellae on mechanical behavior of Mg alloys [J]. Mater. Lett., 2016, 176: 147
26 Jiang L, Jonas J J, Mishra R K, et al. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths [J]. Acta Mater., 2007, 55: 3899
27 Wu Y S, Liu Z, Qin X Z, et al. Effect of initial state on hot deformation and dynamic recrystallization of Ni-Fe based alloy GH984G for steam boiler applications [J]. J. Alloys Compd., 2019, 795: 370
28 Basu I, Al-Samman T. Twin recrystallization mechanisms in magnesium-rare earth alloys [J]. Acta Mater., 2015, 96: 111
29 Pantleon W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction [J]. Scr. Mater., 2008, 58: 994
30 Wang J, Beyerlein I J. Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals [J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 024002
31 Zhang J, Dou Y C, Dong H B. Intrinsic ductility of Mg-based binary alloys: A first-principles study [J]. Scr. Mater., 2014, 89: 13
32 Griffiths D. Explaining texture weakening and improved formability in magnesium rare earth alloys [J]. Mater. Sci. Technol., 2015, 31: 10
33 Guan D K, Mark Rainforth W, Ma L, et al. Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy [J]. Acta Mater., 2017, 126: 132
34 Drouven C, Basu I, Al-Samman T, et al. Twinning effects in deformed and annealed magnesium-neodymium alloys [J]. Mater. Sci. Eng., 2015, A647: 91
[1] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[2] 孟子凯, 孟智超, 高长源, 郭辉, 陈汉森, 陈刘涛, 徐东生, 杨锐. 不同条件下纳米晶 α-Zr蠕变行为的分子动力学模拟[J]. 金属学报, 2024, 60(5): 699-712.
[3] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.
[4] 刚建伟,施斌卿,陈荣石,柯伟. 热轧Mg-1Zn和Mg-1Y合金退火组织演变及静态再结晶行为[J]. 金属学报, 2012, 48(5): 526-533.
[5] 董盼; 张甲; 常新春; 侯万良; 全明秀; 王建强 . Al--Co--Y体系中富 Al区非晶相的形成与结构演化[J]. 金属学报, 2008, 44(2): 227-232 .
[6] 齐广慧; 刘相法 . Al-Si合金宏观晶粒的尺寸突变与结构演化[J]. 金属学报, 2000, 36(3): 225-229 .