Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 177-190    DOI: 10.11900/0412.1961.2024.00236
  研究论文 本期目录 | 过刊浏览 |
预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响
张胜煜1,2,3, 马庆爽1,2, 余黎明4, 张竟文4, 李会军5, 高秋志1,2()
1 东北大学 材料科学与工程学院 沈阳 110819
2 东北大学秦皇岛分校 资源与材料学院 秦皇岛 066004
3 中国石油集团渤海石油装备制造有限公司 天津 300457
4 天津大学 材料科学与工程学院 天津 300354
5 Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Effect of Pre-Aging on Microstructure and Properties of Cold-Rolled Alumina-Forming Austenitic Steel
ZHANG Shengyu1,2,3, MA Qingshuang1,2, YU Liming4, ZHANG Jingwen4, LI Huijun5, GAO Qiuzhi1,2()
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
3 CNPC Bohai Equipment Manufacturing Co. Ltd., Tianjin 300457, China
4 School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
5 Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
引用本文:

张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
Shengyu ZHANG, Qingshuang MA, Liming YU, Jingwen ZHANG, Huijun LI, Qiuzhi GAO. Effect of Pre-Aging on Microstructure and Properties of Cold-Rolled Alumina-Forming Austenitic Steel[J]. Acta Metall Sin, 2025, 61(1): 177-190.

全文: PDF(8676 KB)   HTML
摘要: 

含Al奥氏体耐热(AFA)钢有望应用于超超临界火电机组高温部件,但其高温强度和稳定性目前还有待于进一步提高。本工作研究了预时效处理对冷轧含Al奥氏体耐热钢的析出行为、组织演变和力学性能的影响。结果表明,预时效显著影响了冷轧AFA钢在高温时效过程中的位错强化与析出强化的协同强化机制。预时效试样中的纳米析出相对晶界和位错具有较强的钉扎作用,可增加形核位置及相变驱动力,从而增强了析出强化作用。与冷轧10%试样相比,预时效24 h + 冷轧试样中的Laves相和B2-NiAl相对晶界和位错具有更强的钉扎作用,有效阻碍了位错滑移,导致局部应力集中,为析出相的形成提供更多的形核位置及相变驱动力,加速了相转变过程,析出相的体积分数显著提升。冷轧和预时效+冷轧均使得材料的强度和硬度呈现先升高后降低的趋势。

关键词 预时效冷轧含Al奥氏体耐热钢微观组织演变力学性能    
Abstract

Alumina-forming austenitic (AFA) steel is expected to be applied to high-temperature components of ultra-supercritical thermal power plants. However, the high-temperature strength and stability of AFA steel need to be improved further. Here, the influence of pre-aging on the precipitation behavior, microstructural evolution, and mechanical properties of cold-rolled AFA steel was investigated. The results showed that pre-aging significantly influences the synergistic strengthening due to dislocations and precipitation in cold-rolled AFA steel during the process of high-temperature aging treatment. The precipitates in a sample that received pre-aging treatment exhibited strong pinning effect on grain boundaries and dislocations, which enhances the effect of precipitation strengthening by boosting the number of nucleation sites and the driving force for the formation of the precipitates. Compared to cold rolling with a 10% thickness reduction but without pre-aging, the formation of the Laves phase and the B2-NiAl phase after pre-aging for 24 h resulted in increased pinning on the dislocations and grain boundaries, which prevented dislocation slip, generated stress concentrations, boosted the number of nucleation sites and the driving force for the formation of the precipitates, and accelerated the phase-transition process; the volume fraction of the precipitates also increased significantly. Hardness and tensile tests at room temperature showed that the strength and hardness resulting from both cold rolling and cold rolling after pre-aging first increased and subsequently decreased.

Key wordspre-aging    cold rolling    alumina-forming austenitic steel    microstructural evolution    mechanical property
收稿日期: 2024-07-15     
ZTFLH:  TG156  
基金资助:国家自然科学基金项目(52171107);国家自然科学基金项目(52201203);驻冀高校与石家庄市产学研合作项目(241791237A)
通讯作者: 高秋志,gaoqiuzhi@neuq.edu.cn,主要从事耐热钢和高温合金的组织性能调控研究
Corresponding author: GAO Qiuzhi, professor, Tel: (0335)8048630, E-mail: gaoqiuzhi@neuq.edu.cn
作者简介: 张胜煜,男,1998年生,硕士
图1  拉伸试样示意图
图2  CR10试样在700 ℃时效不同时间后显微组织的SEM像
图3  PA24-CR10试样在700 ℃时效不同时间后显微组织的SEM像
图4  CR10-A0试样显微组织的TEM像、选区电子衍射(SAED)花样及EDS点扫描结果
图5  PA24-CR10-A24试样中δ-铁素体区的SEM像及相应的EDS面扫描结果
图6  PA24-CR10-A500试样中δ-铁素体区的SEM像及相应的EDS面扫描结果
图7  CR10试样和PA24-CR10试样700 ℃时效不同时间的XRD谱
图8  CR10试样和PA24-CR10试样700 ℃时效处理不同时间后Vickers硬度的变化
图9  CR10试样和PA24-CR10试样700 ℃时效处理不同时间后的应力-应变曲线
图10  CR10试样和PA24-CR10试样700 ℃时效不同时间后力学性能的变化
图11  CR10试样在700 ℃时效处理不同时间后的拉伸断口形貌
图12  PA24-CR10试样经700 ℃时效处理不同时间后的拉伸断口形貌
图13  CR10-A100试样和PA24-CR10-A100试样中析出相的尺寸统计
图14  CR10-A100试样和PA24-CR10-A100试样中析出相的体积分数统计
图15  CR10-A0和PA24-CR10-A0试样的TEM像、SAED花样及EDS点扫描结果
图16  4Al-2Cu-AFA钢微观组织演变示意图
1 He H S, Yu L M, Liu C X, et al. Research progress of a novel martensitic heat-resistant steel G115[J]. Acta Metall. Sin., 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
1 何焕生, 余黎明, 刘晨曦 等. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
2 Gao Q Z, Qu F, Zhang H L, et al. Austenite grain growth in alumina-forming austenitic steel[J]. J. Mater. Res., 2016, 31: 1732
3 Gao Q Z, Zhang H L, Li H J, et al. Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior[J]. J. Mater. Sci., 2019, 54: 8760
4 Liu Z Y, Gao Q Z, Zhang H L, et al. EBSD analysis and mechanical properties of alumina-forming austenitic steel during hot deformation and annealing[J]. Mater. Sci. Eng., 2019, A755: 106
5 Gao Q Z, Yuan Z, Ma Q S, et al. Strengthening and toughening optimizations of novel G115 martensitic steel: Utilizing secondary normalizing process[J]. Mater. Sci. Eng., 2022, A852: 143621
6 Jiang J D, Liu Z Y, Gao Q Z, et al. The effect of isothermal aging on creep behavior of modified 2.5Al alumina-forming austenitic steel[J]. Mater. Sci. Eng., 2020, A797: 140219
7 Gwalani B, Escobar J, Song M, et al. Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys[J]. Acta Mater., 2024, 263: 119494
8 Meng H J, Wang J, Wang L, et al. The precipitation control in aged alumina-forming austenitic stainless steels Fe-15Cr-25Ni-3Al-NbWCu by W addition and its effect on the mechanical properties[J]. Mater. Charact., 2020, 163: 110233
9 Yamamoto Y, Brady M P, Lu Z P, et al. Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates[J]. Metall. Mater. Trans., 2007, 38A: 2737
10 Yamamoto Y, Santella M L, Brady M P, et al. Effect of alloying additions on phase equilibria and creep resistance of alumina-forming austenitic stainless steels[J]. Metall. Mater. Trans., 2009, 40A: 1868
11 Yamamoto Y, Takeyama M, Lu Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates[J]. Intermetallics, 2008, 16: 453
12 Liu T, Luo R, Cheng X N, et al. Investigations on the accelerated creep testing of alumina-forming austenitic stainless steel[J]. Acta Metall. Sin., 2020, 56: 1452
doi: 10.11900/0412.1961.2020.00088
12 刘 天, 罗 锐, 程晓农 等. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56: 1452
13 Yuan Z, Ma Q S, Lu B Y, et al. Influence of precipitates evolutions in δ-ferrite and austenite matrix on mechanical properties of alumina-forming austenitic steel[J]. Mater. Sci. Eng., 2022, A847: 143321
14 Hu B, Baker I. High temperature deformation of Laves phase precipitates in alumina-forming austenitic stainless steels[J]. Mater. Lett., 2017, 195: 108
15 Sun B H, Palanisamy D, Ponge D, et al. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite[J]. Acta Mater., 2019, 164: 683
16 Liu Z Y, Ma Q S, Jiang C C, et al. High-temperature creep property deterioration of the alumina-forming austenitic steel: Effect of σ phase[J]. Mater. Sci. Eng., 2022, A846: 143126
17 Gao Q Z, Jiang Y J, Liu Z Y, et al. Effects of alloying elements on microstructure and mechanical properties of Co-Ni-Al-Ti superalloy[J]. Mater. Sci. Eng., 2020, A779: 139139
18 Gao Q Z, Lu B Y, Ma Q S, et al. Effect of Cu addition on microstructure and properties of Fe-20Ni-14Cr alumina-forming austenitic steel[J]. Intermetallics, 2021, 138: 107312
19 Lu B Y, Gao Q Z, Zhang H L, et al. Strengthening and fracture mechanisms of Fe-20Ni-14Cr-2Cu alumina-forming austenitic steel during creeping[J]. J. Mater. Sci., 2022, 57: 20472
20 Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel[J]. Acta Metall. Sin., 2022, 58: 771
doi: 10.11900/0412.1961.2020.00509
20 任 平, 陈兴品, 王存宇 等. 预变形和双级时效对Fe-30Mn-11A1-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58: 771
21 Wang J Q, Liu W F, Liu S, et al. Effect of aging treatment at 700 oC on microstructure and mechanical properties of 9Cr ODS steel[J]. Acta Metall. Sin., 2024, 60: 616
21 汪建强, 刘威峰, 刘 生 等. 700 ℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60: 616
doi: 10.11900/0412.1961.2022.00558
22 Guo Q Y, Li Y M, Chen B, et al. Effect of high-temperature ageing on microstructure and creep properties of S31042 heat-resistant steel[J]. Acta Metall. Sin., 2021, 57: 82
doi: 10.11900/0412.1961.2020.00109
22 郭倩颖, 李彦默, 陈 斌 等. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57: 82
doi: 10.11900/0412.1961.2020.00109
23 Zhao B B, Chang K C, Fan J F, et al. Annealing effects on precipitation and high-temperature properties of a Cu-containing alumina-forming austenitic steel[J]. Mater. Lett., 2016, 176: 83
24 Jiang C C, Gao Q Z, Zhang H L, et al. Microstructure and mechanical properties of 4Al alumina-forming austenitic steel after cold-rolling deformation and annealing[J]. Materials, 2020, 13: 2767
25 Jiang Y J, Gao Q Z, Zhang H L, et al. The effect of isothermal aging on microstructure and mechanical behavior of modified 2.5Al alumina-forming austenitic steel[J]. Mater. Sci. Eng., 2019, A748: 161
26 Zhang J W, Yu L M, Gao Q Z, et al. Creep behavior, microstructure evolution and fracture mechanism of a novel martensite heat resistance steel G115 affected by prior cold deformation[J]. Mater. Sci. Eng., 2022, A850: 143564
27 Wang C S, Fu H D, Zhang H T, et al. Effect of cold-rolling deformation on microstructure, properties, and precipitation behavior of high-performance Cu-Ni-Si alloys[J]. Acta Metall. Sin., 2023, 59: 585
27 王长胜, 付华栋, 张洪涛 等. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59: 585
doi: 10.11900/0412.1961.2021.00208
28 Li L J, Li R G, Zhang J J, et al. Effects of cryorolling on properties and precipitation behavior of a high-strength and high-conductivity Cu-1Cr-0.2Zr-0.25Nb alloy[J]. Acta Metall. Sin, 2024, 60: 405
28 李龙健, 李仁庚, 张家郡 等. 低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响[J]. 金属学报, 2024, 60: 405
doi: 10.11900/0412.1961.2022.00180
29 Wei D X, Gong W, Wang L Q, et al. Strengthening of high-entropy alloys via modulation of cryo-pre-straining-induced defects[J]. J. Mater. Sci. Technol., 2022, 129: 251
doi: 10.1016/j.jmst.2022.04.055
30 Hu B J, Zheng Q Y, Lu Y, et al. Recrystallization controlling in a cold-rolled medium Mn steel and its effect on mechanical properties[J]. Acta Metall. Sin., 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
30 胡宝佳, 郑沁园, 路 轶 等. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
31 Zhang S Y, Gao Q Z, Zhang W, et al. Effect of strengthening mechanisms on mechanical properties of alumina-forming austenitic steel after pre-strain[J]. Prog. Nat. Sci. Mater. Int., 2023, 33: 901
32 Funakawa Y, Ujiro T. Tensile properties of chromium-bearing extra low carbon steel sheets[J]. ISIJ Int., 2010, 50: 1488
33 Sivaprasad S, Tarafder S, Ranganath V R, et al. Effect of prestrain on fracture toughness of HSLA steels[J]. Mater. Sci. Eng., 2000, A284: 195
34 Peng W, Wang J J, Zhang H W, et al. Insights into the role of grain refinement on high-temperature initial oxidation phase transformation and oxides evolution in high aluminium Fe-Mn-Al-C duplex lightweight steel[J]. Corros. Sci., 2017, 126: 197
35 Gao Q Z, Liu Z Y, Li H J, et al. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling[J]. J. Mater. Sci. Technol., 2021, 68: 91
doi: 10.1016/j.jmst.2020.08.013
36 Hu B, Trotter G, Baker I, et al. The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels[J]. Metall. Mater. Trans., 2015, 46A: 3773
37 Trotter G, Rayner G, Baker I, et al. Accelerated precipitation in the AFA stainless steel Fe-20Cr-30Ni-2Nb-5Al via cold working[J]. Intermetallics, 2014, 53: 120
38 Gao Q Z, Jiang C C, Zhang H L, et al. Co-strengthening of dislocations and precipitates in alumina-forming austenitic steel with cold rolling followed by aging[J]. Mater. Sci. Eng., 2022, A831: 142181
39 Zhao B B, Fan J F, Chen Z, et al. Evolution of precipitates in a Cu-containing alumina-forming austenitic steel after short-term mechanical tests[J]. Mater. Charact., 2017, 125: 37
[1] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[2] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[3] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[4] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[5] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[6] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[7] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[8] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[9] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[10] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[11] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[12] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[13] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[14] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[15] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.