|
|
预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响 |
张胜煜1,2,3, 马庆爽1,2, 余黎明4, 张竟文4, 李会军5, 高秋志1,2( ) |
1 东北大学 材料科学与工程学院 沈阳 110819 2 东北大学秦皇岛分校 资源与材料学院 秦皇岛 066004 3 中国石油集团渤海石油装备制造有限公司 天津 300457 4 天津大学 材料科学与工程学院 天津 300354 5 Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia |
|
Effect of Pre-Aging on Microstructure and Properties of Cold-Rolled Alumina-Forming Austenitic Steel |
ZHANG Shengyu1,2,3, MA Qingshuang1,2, YU Liming4, ZHANG Jingwen4, LI Huijun5, GAO Qiuzhi1,2( ) |
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China 3 CNPC Bohai Equipment Manufacturing Co. Ltd., Tianjin 300457, China 4 School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China 5 Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia |
引用本文:
张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
Shengyu ZHANG,
Qingshuang MA,
Liming YU,
Jingwen ZHANG,
Huijun LI,
Qiuzhi GAO.
Effect of Pre-Aging on Microstructure and Properties of Cold-Rolled Alumina-Forming Austenitic Steel[J]. Acta Metall Sin, 2025, 61(1): 177-190.
1 |
He H S, Yu L M, Liu C X, et al. Research progress of a novel martensitic heat-resistant steel G115[J]. Acta Metall. Sin., 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
|
1 |
何焕生, 余黎明, 刘晨曦 等. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
|
2 |
Gao Q Z, Qu F, Zhang H L, et al. Austenite grain growth in alumina-forming austenitic steel[J]. J. Mater. Res., 2016, 31: 1732
|
3 |
Gao Q Z, Zhang H L, Li H J, et al. Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior[J]. J. Mater. Sci., 2019, 54: 8760
|
4 |
Liu Z Y, Gao Q Z, Zhang H L, et al. EBSD analysis and mechanical properties of alumina-forming austenitic steel during hot deformation and annealing[J]. Mater. Sci. Eng., 2019, A755: 106
|
5 |
Gao Q Z, Yuan Z, Ma Q S, et al. Strengthening and toughening optimizations of novel G115 martensitic steel: Utilizing secondary normalizing process[J]. Mater. Sci. Eng., 2022, A852: 143621
|
6 |
Jiang J D, Liu Z Y, Gao Q Z, et al. The effect of isothermal aging on creep behavior of modified 2.5Al alumina-forming austenitic steel[J]. Mater. Sci. Eng., 2020, A797: 140219
|
7 |
Gwalani B, Escobar J, Song M, et al. Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys[J]. Acta Mater., 2024, 263: 119494
|
8 |
Meng H J, Wang J, Wang L, et al. The precipitation control in aged alumina-forming austenitic stainless steels Fe-15Cr-25Ni-3Al-NbWCu by W addition and its effect on the mechanical properties[J]. Mater. Charact., 2020, 163: 110233
|
9 |
Yamamoto Y, Brady M P, Lu Z P, et al. Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates[J]. Metall. Mater. Trans., 2007, 38A: 2737
|
10 |
Yamamoto Y, Santella M L, Brady M P, et al. Effect of alloying additions on phase equilibria and creep resistance of alumina-forming austenitic stainless steels[J]. Metall. Mater. Trans., 2009, 40A: 1868
|
11 |
Yamamoto Y, Takeyama M, Lu Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates[J]. Intermetallics, 2008, 16: 453
|
12 |
Liu T, Luo R, Cheng X N, et al. Investigations on the accelerated creep testing of alumina-forming austenitic stainless steel[J]. Acta Metall. Sin., 2020, 56: 1452
doi: 10.11900/0412.1961.2020.00088
|
12 |
刘 天, 罗 锐, 程晓农 等. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56: 1452
|
13 |
Yuan Z, Ma Q S, Lu B Y, et al. Influence of precipitates evolutions in δ-ferrite and austenite matrix on mechanical properties of alumina-forming austenitic steel[J]. Mater. Sci. Eng., 2022, A847: 143321
|
14 |
Hu B, Baker I. High temperature deformation of Laves phase precipitates in alumina-forming austenitic stainless steels[J]. Mater. Lett., 2017, 195: 108
|
15 |
Sun B H, Palanisamy D, Ponge D, et al. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite[J]. Acta Mater., 2019, 164: 683
|
16 |
Liu Z Y, Ma Q S, Jiang C C, et al. High-temperature creep property deterioration of the alumina-forming austenitic steel: Effect of σ phase[J]. Mater. Sci. Eng., 2022, A846: 143126
|
17 |
Gao Q Z, Jiang Y J, Liu Z Y, et al. Effects of alloying elements on microstructure and mechanical properties of Co-Ni-Al-Ti superalloy[J]. Mater. Sci. Eng., 2020, A779: 139139
|
18 |
Gao Q Z, Lu B Y, Ma Q S, et al. Effect of Cu addition on microstructure and properties of Fe-20Ni-14Cr alumina-forming austenitic steel[J]. Intermetallics, 2021, 138: 107312
|
19 |
Lu B Y, Gao Q Z, Zhang H L, et al. Strengthening and fracture mechanisms of Fe-20Ni-14Cr-2Cu alumina-forming austenitic steel during creeping[J]. J. Mater. Sci., 2022, 57: 20472
|
20 |
Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel[J]. Acta Metall. Sin., 2022, 58: 771
doi: 10.11900/0412.1961.2020.00509
|
20 |
任 平, 陈兴品, 王存宇 等. 预变形和双级时效对Fe-30Mn-11A1-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58: 771
|
21 |
Wang J Q, Liu W F, Liu S, et al. Effect of aging treatment at 700 oC on microstructure and mechanical properties of 9Cr ODS steel[J]. Acta Metall. Sin., 2024, 60: 616
|
21 |
汪建强, 刘威峰, 刘 生 等. 700 ℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60: 616
doi: 10.11900/0412.1961.2022.00558
|
22 |
Guo Q Y, Li Y M, Chen B, et al. Effect of high-temperature ageing on microstructure and creep properties of S31042 heat-resistant steel[J]. Acta Metall. Sin., 2021, 57: 82
doi: 10.11900/0412.1961.2020.00109
|
22 |
郭倩颖, 李彦默, 陈 斌 等. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57: 82
doi: 10.11900/0412.1961.2020.00109
|
23 |
Zhao B B, Chang K C, Fan J F, et al. Annealing effects on precipitation and high-temperature properties of a Cu-containing alumina-forming austenitic steel[J]. Mater. Lett., 2016, 176: 83
|
24 |
Jiang C C, Gao Q Z, Zhang H L, et al. Microstructure and mechanical properties of 4Al alumina-forming austenitic steel after cold-rolling deformation and annealing[J]. Materials, 2020, 13: 2767
|
25 |
Jiang Y J, Gao Q Z, Zhang H L, et al. The effect of isothermal aging on microstructure and mechanical behavior of modified 2.5Al alumina-forming austenitic steel[J]. Mater. Sci. Eng., 2019, A748: 161
|
26 |
Zhang J W, Yu L M, Gao Q Z, et al. Creep behavior, microstructure evolution and fracture mechanism of a novel martensite heat resistance steel G115 affected by prior cold deformation[J]. Mater. Sci. Eng., 2022, A850: 143564
|
27 |
Wang C S, Fu H D, Zhang H T, et al. Effect of cold-rolling deformation on microstructure, properties, and precipitation behavior of high-performance Cu-Ni-Si alloys[J]. Acta Metall. Sin., 2023, 59: 585
|
27 |
王长胜, 付华栋, 张洪涛 等. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59: 585
doi: 10.11900/0412.1961.2021.00208
|
28 |
Li L J, Li R G, Zhang J J, et al. Effects of cryorolling on properties and precipitation behavior of a high-strength and high-conductivity Cu-1Cr-0.2Zr-0.25Nb alloy[J]. Acta Metall. Sin, 2024, 60: 405
|
28 |
李龙健, 李仁庚, 张家郡 等. 低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响[J]. 金属学报, 2024, 60: 405
doi: 10.11900/0412.1961.2022.00180
|
29 |
Wei D X, Gong W, Wang L Q, et al. Strengthening of high-entropy alloys via modulation of cryo-pre-straining-induced defects[J]. J. Mater. Sci. Technol., 2022, 129: 251
doi: 10.1016/j.jmst.2022.04.055
|
30 |
Hu B J, Zheng Q Y, Lu Y, et al. Recrystallization controlling in a cold-rolled medium Mn steel and its effect on mechanical properties[J]. Acta Metall. Sin., 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
|
30 |
胡宝佳, 郑沁园, 路 轶 等. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
|
31 |
Zhang S Y, Gao Q Z, Zhang W, et al. Effect of strengthening mechanisms on mechanical properties of alumina-forming austenitic steel after pre-strain[J]. Prog. Nat. Sci. Mater. Int., 2023, 33: 901
|
32 |
Funakawa Y, Ujiro T. Tensile properties of chromium-bearing extra low carbon steel sheets[J]. ISIJ Int., 2010, 50: 1488
|
33 |
Sivaprasad S, Tarafder S, Ranganath V R, et al. Effect of prestrain on fracture toughness of HSLA steels[J]. Mater. Sci. Eng., 2000, A284: 195
|
34 |
Peng W, Wang J J, Zhang H W, et al. Insights into the role of grain refinement on high-temperature initial oxidation phase transformation and oxides evolution in high aluminium Fe-Mn-Al-C duplex lightweight steel[J]. Corros. Sci., 2017, 126: 197
|
35 |
Gao Q Z, Liu Z Y, Li H J, et al. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling[J]. J. Mater. Sci. Technol., 2021, 68: 91
doi: 10.1016/j.jmst.2020.08.013
|
36 |
Hu B, Trotter G, Baker I, et al. The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels[J]. Metall. Mater. Trans., 2015, 46A: 3773
|
37 |
Trotter G, Rayner G, Baker I, et al. Accelerated precipitation in the AFA stainless steel Fe-20Cr-30Ni-2Nb-5Al via cold working[J]. Intermetallics, 2014, 53: 120
|
38 |
Gao Q Z, Jiang C C, Zhang H L, et al. Co-strengthening of dislocations and precipitates in alumina-forming austenitic steel with cold rolling followed by aging[J]. Mater. Sci. Eng., 2022, A831: 142181
|
39 |
Zhao B B, Fan J F, Chen Z, et al. Evolution of precipitates in a Cu-containing alumina-forming austenitic steel after short-term mechanical tests[J]. Mater. Charact., 2017, 125: 37
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|