Processing math: 100%
Please wait a minute...
金属学报  2024, Vol. 60 Issue (3): 311-322    DOI: 10.11900/0412.1961.2022.00010
  研究论文 本期目录 | 过刊浏览 |
多道次压缩变形对AZ80镁合金微观组织演化的影响
李振亮(), 张欣磊, 田董扩
内蒙古科技大学 材料与冶金学院 包头 014010
Effect of Multi-Pass Compression Deformation on Microstructure Evolution of AZ80 Magnesium Alloy
LI Zhenliang(), ZHANG Xinlei, TIAN Dongkuo
School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
引用本文:

李振亮, 张欣磊, 田董扩. 多道次压缩变形对AZ80镁合金微观组织演化的影响[J]. 金属学报, 2024, 60(3): 311-322.
Zhenliang LI, Xinlei ZHANG, Dongkuo TIAN. Effect of Multi-Pass Compression Deformation on Microstructure Evolution of AZ80 Magnesium Alloy[J]. Acta Metall Sin, 2024, 60(3): 311-322.

全文: PDF(6964 KB)   HTML
摘要: 

镁合金具有密排六方结构,可动滑移系少导致其室温塑性差,而热加工对调控镁合金塑性有重要作用。本工作对AZ80镁合金分别进行恒温、阶梯降温多道次压缩变形,利用电子背散射衍射(EBSD)技术观察分析了不同变形程度、不同变形路径下AZ80镁合金的微观组织,研究了AZ80镁合金热压缩变形过程中晶界、位错密度、Schmid因子和极图演化规律。结果表明:晶粒尺寸、孪晶、织构综合作用对AZ80镁合金塑性调控的影响优于单一动态再结晶对其塑性调控的影响,恒温三次变形(ε = 0.6) (3P)有利于发生动态再结晶,而阶梯降温三次变形(ε = 0.6) (3P)更有利于塑性变形。晶粒取向差减小、小角度晶界(LAGBs)数量增多、几何必需位错(GND)密度增加3者共同作用产生更多86°{10ˉ12} <1ˉ210>拉伸孪晶是影响阶梯降温三次变形塑性调控的重要因素。

关键词 AZ80晶界取向差几何必需位错密度塑性调控    
Abstract

Magnesium alloy has a hexagonal close-packed crystal structure, and its plasticity is poor at room temperature. This is primarily due to the small number of movable slip systems at room temperature, which is prone to deformation texture. Therefore, temperature and compression deformation play an important role in the regulation of plastic deformation. In this work, AZ80 magnesium alloy was subjected to multi-pass compression deformation at a constant temperature and step-down temperature. The microstructure of the AZ80 magnesium alloy with different deformation degrees and deformation paths was observed and analyzed using EBSD. In addition, the grain boundary, dislocation density, Schmid factor, and polar figure evolution of the AZ80 magnesium alloy during hot compression deformation were primarily studied. Results show that the comprehensive effect of grain size, twinning, and texture on the plastic regulation of AZ80 magnesium alloy is better than that of single dynamic recrystallization. Moreover, three-time constant-temperature deformation (ε = 0.6) promotes dynamic recrystallization, whereas three-time step-cooling deformation (ε = 0.6) promotes plastic deformation. More 86°{10ˉ12} <1ˉ210> tensile twins are produced by reduced grain orientation difference, increased number of low-angle grain boundaries, and increased geometrically necessary dislocation density, which are important factors affecting the plastic regulation of three-time step-cooling deformation (ε = 0.6).

Key wordsAZ80    grain boundary    misorientation    geometrically necessary dislocation density    plastic regulation
收稿日期: 2022-01-10     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51364032);内蒙古自然科学基金项目(2022MS05028)
通讯作者: 李振亮,lizhenliang@imust.edu.cn,主要从事镁合金塑性变形研究
Corresponding author: LI Zhenliang, professor, Tel: (0472)5951572, E-mail: lizhenliang@imust.edu.cn
作者简介: 李振亮,男,1968年生,教授,博士
图1  恒温三次变形工艺及阶梯降温三次变形工艺流程图
图2  恒温、阶梯降温2类变形工艺的微观组织演变
图3  恒温、阶梯降温2类变形工艺的平均晶粒尺寸与平均晶粒纵横比变化
图4  恒温、阶梯降温2类变形工艺的晶界分布
图5  恒温、阶梯降温2类变形工艺的晶粒尺寸图
图6  恒温、阶梯降温变形2类工艺晶界占比图与动态再结晶占比图
图7  恒温、阶梯降温变形工艺下的取向差统计图
图8  恒温、阶梯降温2类变形工艺的几何必需位错密度分布图
图9  恒温、阶梯降温变形工艺的几何必需位错密度(ρGND)统计图
图10  恒温、阶梯降温变形工艺的Schmid因子分布图
图11  恒温、阶梯降温变形工艺的Schmid因子分布直方图
图12  恒温、阶梯降温2类变形工艺的极图
图13  恒温、阶梯降温2类变形工艺的取向分布函数(ODF)图
1 Yang Z, Li J P, Zhang J X, et al. Review on research and development of magnesium alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2008, 21: 313
doi: 10.1016/S1006-7191(08)60054-X
2 Cai Y, Sun C Y, Wan L, et al. Study on the dynamic recrystallization softening behavior of AZ80 magnesium alloy [J]. Acta Metall. Sin., 2016, 52: 1123
doi: 10.11900/0412.1961.2016.00051
2 蔡 贇, 孙朝阳, 万 李 等. AZ80镁合金动态再结晶软化行为研究 [J]. 金属学报, 2016, 52: 1123
3 Yasi J A, Hector Jr L G, Trinkle D R. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties [J]. Acta Mater., 2010, 58: 5704
doi: 10.1016/j.actamat.2010.06.045
4 Beer A G, Barnett M R. The post-deformation recrystallization behaviour of magnesium alloy Mg-3Al-1Zn [J]. Scr. Mater., 2009, 61: 1097
doi: 10.1016/j.scriptamat.2009.09.002
5 Guo Q, Yan H G, Chen Z H, et al. Grain refinement in as-cast AZ80 Mg alloy under large strain deformation [J]. Mater. Charact., 2007, 58: 162
doi: 10.1016/j.matchar.2006.04.013
6 Li J Q, Liu J, Cui Z S. Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing strain rate [J]. Mater. Sci. Eng., 2015, A643: 32
7 Zhao Z D, Chen Q, Hu C K, et al. Microstructure and mechanical properties of SPD-processed an as-cast AZ91D+Y magnesium alloy by equal channel angular extrusion and multi-axial forging [J]. Mater. Des., 2009, 30: 4557
doi: 10.1016/j.matdes.2009.04.023
8 Nie X, Dong S, Wang F H, et al. Effects of holding time and Zener-Hollomon parameters on deformation behavior of cast Mg-8Gd-3Y alloy during double-pass hot compression [J]. J. Mater. Sci. Technol., 2018, 34: 2035
doi: 10.1016/j.jmst.2018.03.001
9 Zhang J L, Xie H, Ma Y, et al. Grain growth model of ultra-fine grain AZ80 magnesium alloy multi-directionally forged during the isothermal heating process [J]. Mater. Sci., 2019, 25: 1392
doi: 10.1007/BF00585455
10 Deng L P, Cui K X, Wang B S, et al. Microstructure and texture evolution of AZ31 Mg alloy processed by multi-pass compressing under room temperature [J]. Acta Metall. Sin., 2019, 55: 976
10 邓丽萍, 崔凯旋, 汪炳叔 等. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究 [J]. 金属学报, 2019, 55: 976
doi: 10.11900/0412.1961.2019.00050
11 Song G S, Zhao Y Y, Zhang S H, et al. Effect of texture on deformation mechanism of AZ31 Magnesium alloy warm compression [J]. Chin. J. Nonferrous Met., 2018, 28: 2206
11 宋广胜, 赵原野, 张士宏 等. 织构对AZ31镁合金温热压缩变形机制影响 [J]. 中国有色金属学报, 2018, 28: 2206
12 Tang L Q, Jiang F L, Teng J, et al. Strain path dependent evolutions of microstructure and texture in AZ80 magnesium alloy during hot deformation [J]. J. Alloys Compd., 2019, 806: 292
doi: 10.1016/j.jallcom.2019.07.262
13 Zhou X J, Zhang J, Chen X M, et al. Fabrication of high-strength AZ80 alloys via multidirectional forging in air with no need of ageing treatment [J]. J. Alloys Compd., 2019, 787: 551
doi: 10.1016/j.jallcom.2019.02.133
14 Khosravani A, Scott J, Miles M P, et al. Twinning in magnesium alloy AZ31B under different strain paths at moderately elevated temperatures [J]. Int. J. Plast., 2013, 45: 160
doi: 10.1016/j.ijplas.2013.01.009
15 Yan Z F, Wang D H, He X L, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect [J]. Mater. Sci. Eng., 2018, A723: 212
16 Quan G Z, Shi Y, Wang Y X, et al. Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress-strain data [J]. Mater. Sci. Eng., 2011, A528: 8051
17 Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
18 Xie C, Wang Y N, Fang Q H, et al. Effects of cooperative grain boundary sliding and migration on the particle cracking of fine-grained magnesium alloys [J]. J. Alloys Compd., 2017, 704: 641
doi: 10.1016/j.jallcom.2017.02.057
19 Khosravani A, Fullwood D T, Adams B L, et al. Nucleation and propagation of {10 1 ¯ 2} twins in AZ31 magnesium alloy [J]. Acta Mater., 2015, 100: 202
doi: 10.1016/j.actamat.2015.08.024
20 Sun D K, Chang C P, Kao P W. Microstructural aspects of grain boundary bulge in a dynamically recrystallized Mg-Al-Zn alloy [J]. Metall. Mater. Trans., 2010, 41A: 1864
21 Liu Z G, Li P J, Xiong L T, et al. High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy [J] Mater. Sci. Eng., 2017, A680: 259
22 Rupert T J, Gianola D S, Gan Y, et al. Experimental observations of stress-driven grain boundary migration [J]. Science, 2009, 326: 1686
doi: 10.1126/science.1178226 pmid: 20019286
23 Yu D L, Zhang D F, Luo Y X, et al. Microstructure evolution during high cycle fatigue in Mg-6Zn-1Mn alloy [J]. Mater. Sci. Eng., 2016, A658: 108
24 Yang P, Hu Y S, Cui F E. Texture investigation on the deformation mechanisms in magnesium alloy AZ31 deformed at high temperatures [J]. Chin. J. Mater. Res., 2004, 18: 52
24 杨 平, 胡轶嵩, 崔凤娥. 镁合金AZ31高温形变机制的织构分析 [J]. 材料研究学报, 2004, 18: 52
25 Chen Z H. Wrought Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2005: 329
25 陈振华. 变形镁合金 [M]. 北京: 化学工业出版社, 2005: 329
26 Li Z L, Tian D K. Microstructure evolution of AZ80 magnesium alloy under different states [J]. Rare Met. Mater. Eng., 2021, 50: 639
26 李振亮, 田董扩. 不同状态条件下AZ80镁合金微观组织演化 [J]. 稀有金属材料与工程, 2021, 50: 639
[1] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[2] 任军强, 邵珊, 王启, 卢学峰, 薛红涛, 汤富领. 含氧纳米多晶 α-Ti拉伸力学性能与变形机制的分子动力学模拟[J]. 金属学报, 2024, 60(2): 220-230.
[3] 冯小铮, 王卫国, Gregory S. Rohrer, 陈松, 洪丽华, 林燕, 王宗谱, 周邦新. 晶粒长大对高纯Al {111}/{111}近奇异晶界的影响[J]. 金属学报, 2024, 60(1): 80-94.
[4] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[5] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[8] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[9] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[10] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[11] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[12] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[13] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[14] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[15] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.