Please wait a minute...
金属学报  2024, Vol. 60 Issue (6): 837-847    DOI: 10.11900/0412.1961.2022.00129
  研究论文 本期目录 | 过刊浏览 |
金属间化合物Pt7Sb投影Berry相位与析氢催化关联的第一性原理计算
周彦余1,2, 李江旭1, 刘晨1,2, 赖俊文1,2, 高强1, 马会1,2, 孙岩1,2(), 陈星秋1,2
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
First-Principles Study of Projected Berry Phase and Hydrogen Evolution Catalysis in Pt7Sb
ZHOU Yanyu1,2, LI Jiangxu1, LIU Chen1,2, LAI Junwen1,2, GAO Qiang1, MA Hui1,2, SUN Yan1,2(), CHEN Xingqiu1,2
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

周彦余, 李江旭, 刘晨, 赖俊文, 高强, 马会, 孙岩, 陈星秋. 金属间化合物Pt7Sb投影Berry相位与析氢催化关联的第一性原理计算[J]. 金属学报, 2024, 60(6): 837-847.
Yanyu ZHOU, Jiangxu LI, Chen LIU, Junwen LAI, Qiang GAO, Hui MA, Yan SUN, Xingqiu CHEN. First-Principles Study of Projected Berry Phase and Hydrogen Evolution Catalysis in Pt7Sb[J]. Acta Metall Sin, 2024, 60(6): 837-847.

全文: PDF(3103 KB)   HTML
摘要: 

高效催化材料的设计是能源材料领域的重要任务之一。本工作根据寻找具有低Pt负载量的高效析氢反应(HER)催化剂的指导原则,结合投影Berry相位描述符,设计发现了性能优异的HER催化剂立方Pt7Sb,其氢吸附Gibbs自由能(ΔGH*)甚至小于Pt元素。因此,在降低Pt负载量的情况下,其HER催化活性有望提高。从电子结构分析来看,2个描述符ΔGH*和投影Berry相位之间有很好的一致性。由于投影Berry相位完全由体态(波函数相位)决定,这种一致性意味着良好的催化性能与本征电子结构的拓扑性质之间存在着密切的关系。该结果提供了一个很好的HER催化剂候选材料,降低了Pt的负载量,并为展示催化剂本征拓扑性质的作用提供了参考。

关键词 析氢反应催化剂投影Berry相位第一性原理计算    
Abstract

With the increase of global energy consumption and related environment pollution, new types of renewable clean energy resources and carriers are desirable. Given its high gravimetric energy density and combustion product (i.e., water), molecular hydrogen has attracted considerable attention. Obtaining molecular hydrogen from water splitting is the ideal strategy because inputs and outputs are carbon-free clean matter. In achieving this process, a suitable and highly efficient catalyst is a crucial parameter. Novel metal Pt is an excellent catalyst with high efficiency and chemical stability. However, owing to its high cost and insufficient reserves on Earth, the wide application of Pt in catalysis is strongly limited. Correspondingly, the design of a highly efficient hydrogen evolution reaction (HER) catalyst with low Pt loading is an important task for electrochemical water splitting in the field of renewable energy resources. Understanding the hidden mechanism is essential for the guiding principle of such a design. In this study, an excellent HER catalyst in cubic Pt7Sb is proposed, in which Gibbs free energy for hydrogen adsorption (ΔGH*) is smaller than that from Pt. Thus, together with its good chemical stability, a better HER catalytic activity with reduced Pt loading can be obtained. Based on the analysis of electronic structures, a good agreement between the two descriptors of ΔGH* and the projected Berry phase (PBP) is revealed. Considering that the PBP is purely decided by the bulk state, such an agreement indicates a strong relationship between the good catalytic performance and the topological nature of the intrinsic electronic structure. This work provides an excellent HER catalytic candidate with reduced Pt loading and a good example to show the role of the intrinsic topological nature in catalysts.

Key wordshydrogen evolution reaction    catalyst    projected Berry phase    first-principles calculation
收稿日期: 2022-03-22     
ZTFLH:  TG111.1  
基金资助:国家自然科学基金项目(51901228;52271016;52188101);辽宁省兴辽英才计划青年拔尖项目(XLYC2203080)
通讯作者: 孙 岩,sunyan@imr.ac.cn,主要从事材料计算研究;
Corresponding author: SUN Yan, professor, Tel: (024)23975362, E-mail: sunyan@imr.ac.cn
作者简介: 周彦余,女,1997年生,硕士
图1  具有不同晶格方向和终端的Pt7Sb平板模型和相应的表面能
图2  Pt7Sb和Pt的晶体结构图,Pt7Sb(111)表面不同吸附位点示意图及Pt7Cu、Pt、Pt7Sb的能带结构
图3  具有不同晶格方向和终端的Pt7Cu平板模型和相应的表面能
图4  Pt7Sb、Pt7Cu和Pt的台阶图及其与文献[20,37,42]对比所得火山图
图5  Pt7Sb、Pt7Cu、Pt体结构电子态密度及差分电荷密度分析图
图6  Pt7Sb、Pt7Cu、Pt投影电子态密度图
图7  Pt7Sb和Pt7Cu的投影Berry曲率和投影Berry相位
1 Tian J Q, Liu Q, Asiri A M, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14 [J]. J. Am. Chem. Soc., 2014, 136: 7587
doi: 10.1021/ja503372r pmid: 24830333
2 Morales-Guio C G, Stern L A, Hu X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution [J]. Chem. Soc. Rev., 2014, 43: 6555
doi: 10.1039/c3cs60468c pmid: 24626338
3 Mahmood J, Li F, Jung S M, et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction [J]. Nat. Nanotechnol., 2017, 12: 441
doi: 10.1038/nnano.2016.304 pmid: 28192390
4 Gong M, Zhou W, Tsai M C, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis [J]. Nat. Commun., 2014, 5: 4695
doi: 10.1038/ncomms5695 pmid: 25146255
5 United States Department of Energy. A national vision of America's transition to a hydrogen economy: To 2030 and beyond [A]. National Hydrogen Vision Meeting [C]. Washington DC, November 15-16 2001. (DOE, 2002). https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/vision_doc.pdf [18. 09.2013]
6 Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces [J]. Science, 2011, 334: 1256
doi: 10.1126/science.1211934 pmid: 22144621
7 Pohl M D, Watzele S, Calle-Vallejo F, et al. Nature of highly active electrocatalytic sites for the hydrogen evolution reaction at Pt electrodes in acidic media [J]. ACS Omega, 2017, 2: 8141
doi: 10.1021/acsomega.7b01126 pmid: 31457359
8 Jin X, Li J, Cui Y T, et al. Cu3P-Ni2P hybrid hexagonal nanosheet arrays for efficient hydrogen evolution reaction in alkaline solution [J]. Inorg. Chem., 2019, 58: 11630
9 Tan T L, Wang L L, Zhang J, et al. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect [J]. ACS Catal., 2015, 5: 2376
10 Tavakkoli M, Holmberg N, Kronberg R, et al. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction [J]. ACS Catal., 2017, 7: 3121
11 Zhang L H, Han L L, Liu H X, et al. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media [J]. Angew. Chem. Int. Ed., 2017, 56: 13694
doi: 10.1002/anie.201706921 pmid: 28787544
12 Cheng N C, Stambula S, Wang D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction [J]. Nat. Commun., 2016, 7: 13638
doi: 10.1038/ncomms13638 pmid: 27901129
13 Hammer B, Nørskov J K. Theoretical surface science and catalysis-calculations and concepts [J]. Adv. Catal., 2000, 45: 71
14 Yan B H, Stadtmüller B, Haag N, et al. Topological states on the gold surface [J]. Nat. Commun., 2015, 6: 10167
doi: 10.1038/ncomms10167 pmid: 26658826
15 Hasan M Z, Kane C L. Colloquium: Topological insulators [J]. Rev. Mod. Phys., 2010, 82: 3045
16 Qi X L, Zhang S C. Topological insulators and superconductors [J]. Rev. Mod. Phys., 2011, 83: 1057
17 Wang X X, Bian G, Miller T, et al. Fragility of surface states and robustness of topological order in Bi2Se3 against oxidation [J]. Phys. Rev. Lett., 2012, 108: 096404
18 Plucinski L, Mussler G, Krumrain J, et al. Robust surface electronic properties of topological insulators: Bi2Te3 films grown by molecular beam epitaxy [J]. Appl. Phys. Lett., 2011, 98: 222503
19 Chen C Y, He S L, Weng H M, et al. Robustness of topological order and formation of quantum well states in topological insulators exposed to ambient environment [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 3694
doi: 10.1073/pnas.1115555109 pmid: 22355146
20 Rajamathi C R, Gupta U, Kumar N, et al. Weyl semimetals as hydrogen evolution catalysts [J]. Adv. Mater., 2017, 29: 1606202
21 Li J X, Ma H, Xie Q, et al. Topological quantum catalyst: Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family [J]. Sci. China Mater., 2018, 61: 23
22 Li G W, Fu C G, Shi W J, et al. Dirac nodal arc semimetal PtSn4: An ideal platform for understanding surface properties and catalysis for hydrogen evolution [J]. Angew. Chem., 2019, 131: 13241
23 Shekhar C, Nayak A K, Sun Y, et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP [J]. Nat. Phys., 2015, 11: 645
doi: 10.1038/NPHYS3372
24 Xu Q N, Li G W, Zhang Y, et al. Descriptor for hydrogen evolution catalysts based on the bulk band structure effect [J]. ACS Catal., 2020, 10: 5042
doi: 10.1021/acscatal.9b05539 pmid: 32391187
25 Chen H, Zhu W G, Xiao D, et al. Co oxidation facilitated by robust surface states on Au-covered topological insulators [J]. Phys. Rev. Lett., 2011, 107: 056804
26 Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond [J]. J. Comput. Chem., 2008, 29: 2044
27 Bryk T, Demchuk T, Jakse N, et al. A search for two types of transverse excitations in liquid polyvalent metals at ambient pressure: An ab initio molecular dynamics study of collective excitations in liquid Al, Tl, and Ni [J]. Front. Phys., 2018, 6: 6
28 Hammer B, Hansen L B, Nørskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Phys. Rev., 1999, 59B: 7413
29 Methfessel M, Paxton A T. High-precision sampling for Brillouin-zone integration in metals [J]. Phys. Rev., 1989, 40B: 3616
30 Rapcewicz K, Chen B, Yakobson B, et al. Consistent methodology for calculating surface and interface energies [J]. Phys. Rev., 1998, 57B: 7281
31 Zhang W, Smith J R. Stoichiometry and adhesion of Nb/Al2O3 [J]. Phys. Rev., 2000, 61B: 16883
32 Siegel D J, Hector Jr L G, Adams J B. Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC [J]. Surf. Sci., 2002, 498: 321
33 Batyrev I, Alavi A, Finnis M W. Abinitio calculations on the Al2O3(0001) surface [J]. Faraday Discuss., 1999, 114: 33
34 Tang Q, Jiang D E. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles [J]. ACS Catal., 2016, 6: 4953
35 Hansen M H, Stern L A, Feng L G, et al. Widely available active sites on Ni2P for electrochemical hydrogen evolution—Insights from first principles calculations [J]. Phys. Chem. Chem. Phys., 2015, 17: 10823
36 Li X B, Cao T F, Zheng F P, et al. Computational screening of electrocatalytic materials for hydrogen evolution: Platinum monolayer on transitional metals [J]. J. Phys. Chem. C, 2019, 123: 495
37 Nørskov J K, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution [J]. J. Electrochem. Soc., 2005, 152: J23
38 Durussel P, Feschotte P. Les systèmes binaires Pb Sb et Pt Sb [J]. J. Alloys Compd., 1991, 176: 173
39 Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions [J]. J. Electroanal. Chem. Interfacial Electrochem., 1972, 39: 163
40 van Troostwijk A P, Deiman J R. Sur une manière de décomposer l'eau en air inflammable et en air vital [J]. Obs. Phys., 1789, 35: 369
41 Paul S. Hydrogenation and dehydrogenation by catalysis [J]. Berichte der Deutschen Chemischen Gesellschaft, 1911, 44: 17
42 Greeley J, Jaramillo T F, Bonde J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution [J]. Nat. Mater., 2006, 5: 909
pmid: 17041585
43 Bockris J O M, Ammar I A, Huq A K M S. The mechanism of the hydrogen evolution reaction on platinum, silver and tungsten surfaces in acid solutions [J]. J. Phys. Chem., 1957, 61: 879
44 Pentland N, Bockris J O M, Sheldon E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron: Mechanism and measurement technique under high purity conditions [J]. J. Electrochem. Soc., 1957, 104: 182
45 Bockris J O M, Srinivasan S. Elucidation of the mechanism of electrolytic hydrogen evolution by the use of H-T separation factors [J]. Electrochim. Acta, 1964, 9: 31
[1] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[2] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[3] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[4] 毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.
[5] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
[6] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[7] 丘玉萍, 戴豪, 戴洪斌, 王平. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控[J]. 金属学报, 2018, 54(9): 1289-1296.
[8] 李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.
[9] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[10] 周刚, 叶荔华, 王皞, 徐东生, 孟长功, 杨锐. 六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究[J]. 金属学报, 2018, 54(4): 603-612.
[11] 吉忠海, 张莉莉, 汤代明, 刘畅, 成会明. 金属催化剂控制生长单壁碳纳米管研究进展[J]. 金属学报, 2018, 54(11): 1665-1682.
[12] 尚秀玲,张波,柯伟. 富Sb相对锌合金在近中性和酸性溶液中耐蚀性的影响[J]. 金属学报, 2017, 53(3): 351-357.
[13] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[14] 钟玉洁,戴洪斌,王平. 水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究*[J]. 金属学报, 2016, 52(4): 505-512.
[15] 杨晓丹, 姜春海, 杨振明, 张劲松. 泡沫SiC负载钴基结构化催化剂的制备及其催化性能*[J]. 金属学报, 2014, 50(6): 762-768.