|
|
金属间化合物Pt7Sb投影Berry相位与析氢催化关联的第一性原理计算 |
周彦余1,2, 李江旭1, 刘晨1,2, 赖俊文1,2, 高强1, 马会1,2, 孙岩1,2( ), 陈星秋1,2 |
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
First-Principles Study of Projected Berry Phase and Hydrogen Evolution Catalysis in Pt7Sb |
ZHOU Yanyu1,2, LI Jiangxu1, LIU Chen1,2, LAI Junwen1,2, GAO Qiang1, MA Hui1,2, SUN Yan1,2( ), CHEN Xingqiu1,2 |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
周彦余, 李江旭, 刘晨, 赖俊文, 高强, 马会, 孙岩, 陈星秋. 金属间化合物Pt7Sb投影Berry相位与析氢催化关联的第一性原理计算[J]. 金属学报, 2024, 60(6): 837-847.
Yanyu ZHOU,
Jiangxu LI,
Chen LIU,
Junwen LAI,
Qiang GAO,
Hui MA,
Yan SUN,
Xingqiu CHEN.
First-Principles Study of Projected Berry Phase and Hydrogen Evolution Catalysis in Pt7Sb[J]. Acta Metall Sin, 2024, 60(6): 837-847.
1 |
Tian J Q, Liu Q, Asiri A M, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14 [J]. J. Am. Chem. Soc., 2014, 136: 7587
doi: 10.1021/ja503372r
pmid: 24830333
|
2 |
Morales-Guio C G, Stern L A, Hu X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution [J]. Chem. Soc. Rev., 2014, 43: 6555
doi: 10.1039/c3cs60468c
pmid: 24626338
|
3 |
Mahmood J, Li F, Jung S M, et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction [J]. Nat. Nanotechnol., 2017, 12: 441
doi: 10.1038/nnano.2016.304
pmid: 28192390
|
4 |
Gong M, Zhou W, Tsai M C, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis [J]. Nat. Commun., 2014, 5: 4695
doi: 10.1038/ncomms5695
pmid: 25146255
|
5 |
United States Department of Energy. A national vision of America's transition to a hydrogen economy: To 2030 and beyond [A]. National Hydrogen Vision Meeting [C]. Washington DC, November 15-16 2001. (DOE, 2002). https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/vision_doc.pdf [18. 09.2013]
|
6 |
Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces [J]. Science, 2011, 334: 1256
doi: 10.1126/science.1211934
pmid: 22144621
|
7 |
Pohl M D, Watzele S, Calle-Vallejo F, et al. Nature of highly active electrocatalytic sites for the hydrogen evolution reaction at Pt electrodes in acidic media [J]. ACS Omega, 2017, 2: 8141
doi: 10.1021/acsomega.7b01126
pmid: 31457359
|
8 |
Jin X, Li J, Cui Y T, et al. Cu3P-Ni2P hybrid hexagonal nanosheet arrays for efficient hydrogen evolution reaction in alkaline solution [J]. Inorg. Chem., 2019, 58: 11630
|
9 |
Tan T L, Wang L L, Zhang J, et al. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect [J]. ACS Catal., 2015, 5: 2376
|
10 |
Tavakkoli M, Holmberg N, Kronberg R, et al. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction [J]. ACS Catal., 2017, 7: 3121
|
11 |
Zhang L H, Han L L, Liu H X, et al. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media [J]. Angew. Chem. Int. Ed., 2017, 56: 13694
doi: 10.1002/anie.201706921
pmid: 28787544
|
12 |
Cheng N C, Stambula S, Wang D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction [J]. Nat. Commun., 2016, 7: 13638
doi: 10.1038/ncomms13638
pmid: 27901129
|
13 |
Hammer B, Nørskov J K. Theoretical surface science and catalysis-calculations and concepts [J]. Adv. Catal., 2000, 45: 71
|
14 |
Yan B H, Stadtmüller B, Haag N, et al. Topological states on the gold surface [J]. Nat. Commun., 2015, 6: 10167
doi: 10.1038/ncomms10167
pmid: 26658826
|
15 |
Hasan M Z, Kane C L. Colloquium: Topological insulators [J]. Rev. Mod. Phys., 2010, 82: 3045
|
16 |
Qi X L, Zhang S C. Topological insulators and superconductors [J]. Rev. Mod. Phys., 2011, 83: 1057
|
17 |
Wang X X, Bian G, Miller T, et al. Fragility of surface states and robustness of topological order in Bi2Se3 against oxidation [J]. Phys. Rev. Lett., 2012, 108: 096404
|
18 |
Plucinski L, Mussler G, Krumrain J, et al. Robust surface electronic properties of topological insulators: Bi2Te3 films grown by molecular beam epitaxy [J]. Appl. Phys. Lett., 2011, 98: 222503
|
19 |
Chen C Y, He S L, Weng H M, et al. Robustness of topological order and formation of quantum well states in topological insulators exposed to ambient environment [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 3694
doi: 10.1073/pnas.1115555109
pmid: 22355146
|
20 |
Rajamathi C R, Gupta U, Kumar N, et al. Weyl semimetals as hydrogen evolution catalysts [J]. Adv. Mater., 2017, 29: 1606202
|
21 |
Li J X, Ma H, Xie Q, et al. Topological quantum catalyst: Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family [J]. Sci. China Mater., 2018, 61: 23
|
22 |
Li G W, Fu C G, Shi W J, et al. Dirac nodal arc semimetal PtSn4: An ideal platform for understanding surface properties and catalysis for hydrogen evolution [J]. Angew. Chem., 2019, 131: 13241
|
23 |
Shekhar C, Nayak A K, Sun Y, et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP [J]. Nat. Phys., 2015, 11: 645
doi: 10.1038/NPHYS3372
|
24 |
Xu Q N, Li G W, Zhang Y, et al. Descriptor for hydrogen evolution catalysts based on the bulk band structure effect [J]. ACS Catal., 2020, 10: 5042
doi: 10.1021/acscatal.9b05539
pmid: 32391187
|
25 |
Chen H, Zhu W G, Xiao D, et al. Co oxidation facilitated by robust surface states on Au-covered topological insulators [J]. Phys. Rev. Lett., 2011, 107: 056804
|
26 |
Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond [J]. J. Comput. Chem., 2008, 29: 2044
|
27 |
Bryk T, Demchuk T, Jakse N, et al. A search for two types of transverse excitations in liquid polyvalent metals at ambient pressure: An ab initio molecular dynamics study of collective excitations in liquid Al, Tl, and Ni [J]. Front. Phys., 2018, 6: 6
|
28 |
Hammer B, Hansen L B, Nørskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Phys. Rev., 1999, 59B: 7413
|
29 |
Methfessel M, Paxton A T. High-precision sampling for Brillouin-zone integration in metals [J]. Phys. Rev., 1989, 40B: 3616
|
30 |
Rapcewicz K, Chen B, Yakobson B, et al. Consistent methodology for calculating surface and interface energies [J]. Phys. Rev., 1998, 57B: 7281
|
31 |
Zhang W, Smith J R. Stoichiometry and adhesion of Nb/Al2O3 [J]. Phys. Rev., 2000, 61B: 16883
|
32 |
Siegel D J, Hector Jr L G, Adams J B. Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC [J]. Surf. Sci., 2002, 498: 321
|
33 |
Batyrev I, Alavi A, Finnis M W. Abinitio calculations on the Al2O3(0001) surface [J]. Faraday Discuss., 1999, 114: 33
|
34 |
Tang Q, Jiang D E. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles [J]. ACS Catal., 2016, 6: 4953
|
35 |
Hansen M H, Stern L A, Feng L G, et al. Widely available active sites on Ni2P for electrochemical hydrogen evolution—Insights from first principles calculations [J]. Phys. Chem. Chem. Phys., 2015, 17: 10823
|
36 |
Li X B, Cao T F, Zheng F P, et al. Computational screening of electrocatalytic materials for hydrogen evolution: Platinum monolayer on transitional metals [J]. J. Phys. Chem. C, 2019, 123: 495
|
37 |
Nørskov J K, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution [J]. J. Electrochem. Soc., 2005, 152: J23
|
38 |
Durussel P, Feschotte P. Les systèmes binaires Pb Sb et Pt Sb [J]. J. Alloys Compd., 1991, 176: 173
|
39 |
Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions [J]. J. Electroanal. Chem. Interfacial Electrochem., 1972, 39: 163
|
40 |
van Troostwijk A P, Deiman J R. Sur une manière de décomposer l'eau en air inflammable et en air vital [J]. Obs. Phys., 1789, 35: 369
|
41 |
Paul S. Hydrogenation and dehydrogenation by catalysis [J]. Berichte der Deutschen Chemischen Gesellschaft, 1911, 44: 17
|
42 |
Greeley J, Jaramillo T F, Bonde J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution [J]. Nat. Mater., 2006, 5: 909
pmid: 17041585
|
43 |
Bockris J O M, Ammar I A, Huq A K M S. The mechanism of the hydrogen evolution reaction on platinum, silver and tungsten surfaces in acid solutions [J]. J. Phys. Chem., 1957, 61: 879
|
44 |
Pentland N, Bockris J O M, Sheldon E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron: Mechanism and measurement technique under high purity conditions [J]. J. Electrochem. Soc., 1957, 104: 182
|
45 |
Bockris J O M, Srinivasan S. Elucidation of the mechanism of electrolytic hydrogen evolution by the use of H-T separation factors [J]. Electrochim. Acta, 1964, 9: 31
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|