|
|
基于稳定性的第三代先进高强钢设计 |
张宇1, 吴盼1, 贾东昇1, 黄林科1, 贾晓晴2, 刘峰1,3( ) |
1 西北工业大学 凝固技术国家重点实验室 西安 710072 2 上海交通大学 材料科学与工程学院 上海 200240 3 西北工业大学 分析测试中心 西安 710072 |
|
TG-AHSS Materials Design Based on Thermodynamic and Generalized Stability |
ZHANG Yu1, WU Pan1, JIA Dongsheng1, HUANG Linke1, JIA Xiaoqing2, LIU Feng1,3( ) |
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 3 Analytical and Testing Center, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
张宇, 吴盼, 贾东昇, 黄林科, 贾晓晴, 刘峰. 基于稳定性的第三代先进高强钢设计[J]. 金属学报, 2024, 60(2): 143-153.
Yu ZHANG,
Pan WU,
Dongsheng JIA,
Linke HUANG,
Xiaoqing JIA,
Feng LIU.
TG-AHSS Materials Design Based on Thermodynamic and Generalized Stability[J]. Acta Metall Sin, 2024, 60(2): 143-153.
1 |
Christian J W. The Theory of Transformations in Metals and Alloys [M]. Kidlington: Elsevier, 2002: 1
|
2 |
Kocks U F, Argon A S, Ashby M F. Thermodynamics and kinetics of slip [J]. Prog. Mater. Sci., 1975, 19: 1
doi: 10.1016/0079-6425(75)90005-5
|
3 |
Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels [J]. Prog. Mater. Sci., 2018, 94: 174
doi: 10.1016/j.pmatsci.2018.01.006
|
4 |
Song S J, Che W K, Zhang J B, et al. Kinetics and microstructural modeling of isothermal austenite-to-ferrite transformation in Fe-C-Mn-Si steels [J]. J. Mater. Sci. Technol., 2019, 35: 1753
doi: 10.1016/j.jmst.2019.04.010
|
5 |
Wang K, Shang S L, Wang Y, et al. Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study [J]. Acta Mater., 2018, 147: 261
doi: 10.1016/j.actamat.2018.01.013
|
6 |
Wang K, Zhang L, Liu F. Multi-scale modeling of the complex microstructural evolution in structural phase transformations [J]. Acta Mater., 2019, 162: 78
doi: 10.1016/j.actamat.2018.09.046
|
7 |
Peng H R, Liu B S, Liu F. A strategy for designing stable nanocrystalline alloys by thermo-kinetic synergy [J]. J. Mater. Sci. Technol., 2020, 43: 21
doi: 10.1016/j.jmst.2019.11.006
|
8 |
Liu F, Wang H F, Song S J, et al. Competitions correlated with nucleation and growth in non-equilibrium solidification and solid-state transformation [J]. Prog. Phys., 2012, 32(2): 57
|
8 |
刘 峰, 王海丰, 宋韶杰 等. 非平衡凝固与固态相变中有关形核和长大的竞争研究(英文) [J]. 物理学进展, 2012, 32(2): 57
|
9 |
Zhang Y, He Y Q, Zhang Y Y, et al. Bainitic transformation and generalized stability [J]. Scr. Mater., 2023, 227: 115311
doi: 10.1016/j.scriptamat.2023.115311
|
10 |
Huang L K, Lin W T, Wang K, et al. Grain boundary-constrained reverse austenite transformation in nanostructured Fe alloy: Model and application [J]. Acta Mater., 2018, 154: 56
doi: 10.1016/j.actamat.2018.05.021
|
11 |
Chen Y Z, Wang K, Shan G B, et al. Grain size stabilization of mechanically alloyed nanocrystalline Fe-Zr alloys by forming highly dispersed coherent Fe-Zr-O nanoclusters [J]. Acta Mater., 2018, 158: 340
doi: 10.1016/j.actamat.2018.07.070
|
12 |
Song S J, Liu F. Kinetic modeling of solid-state partitioning phase transformation with simultaneous misfit accommodation [J]. Acta Mater., 2016, 108: 85
doi: 10.1016/j.actamat.2016.02.010
|
13 |
Peng H R, Huang L K, Liu F. A thermo-kinetic correlation for grain growth in nanocrystalline alloys [J]. Mater Lett., 2018, 219: 276
doi: 10.1016/j.matlet.2018.02.114
|
14 |
Lin B, Wang K, Liu F, et al. An intrinsic correlation between driving force and energy barrier upon grain boundary migration [J]. J. Mater. Sci. Technol., 2018, 34: 1359
doi: 10.1016/j.jmst.2017.11.002
|
15 |
Song S J, Liu F, Zhang Z H. Analysis of elastic-plastic accommodation due to volume misfit upon solid-state phase transformation [J]. Acta Mater., 2014, 64: 266
doi: 10.1016/j.actamat.2013.10.039
|
16 |
Huang L K, Lin W T, Zhang Y B, et al. Generalized stability criterion for exploiting optimized mechanical properties by a general correlation between phase transformations and plastic deformations [J]. Acta Mater., 2020, 201: 167
doi: 10.1016/j.actamat.2020.10.005
|
17 |
Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
doi: 10.1016/S1359-6454(03)00059-4
|
18 |
Rong Y H. Advanced Q-P-T steels with ultrahigh strength-high ductility [J]. Acta Metall. Sin., 2011, 47: 1483
|
18 |
戎咏华. 先进超高强度-高塑性Q-P-T钢 [J]. 金属学报, 2011, 47: 1483
doi: 10.3724/SP.J.1037.2011.00514
|
19 |
Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges [J]. Scr. Mater., 2017, 126: 63
doi: 10.1016/j.scriptamat.2016.07.013
|
20 |
Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
doi: 10.1016/j.jmst.2017.06.017
|
21 |
Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels [J]. Prog. Mater. Sci., 2018, 94: 174
doi: 10.1016/j.pmatsci.2018.01.006
|
22 |
Ma Y. Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications [J]. Mater. Sci. Technol., 2017, 33: 1713
doi: 10.1080/02670836.2017.1312208
|
23 |
Furukawa T, Huang H, Matsumura O. Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity [J]. Mater. Sci. Technol., 1994, 10: 964
doi: 10.1179/mst.1994.10.11.964
|
24 |
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177
pmid: 28839008
|
25 |
Kim S J, Lee C G, Choi I, et al. Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.15wt pct C transformation-induced plasticity-aided cold-rolled steel sheets [J]. Metall. Mater. Trans., 2001, 32A: 505
|
26 |
Heo Y U, Suh D W, Lee H C. Fabrication of an ultrafine-grained structure by a compositional pinning technique [J]. Acta Mater., 2014, 77: 236
doi: 10.1016/j.actamat.2014.05.057
|
27 |
Dong H, Wang M Q, Weng Y Q. Performance improvement of steels through M3 structure control [J]. Iron Steel, 2010, 45(7): 1
doi: 10.1080/03019233.2017.1286546
|
27 |
董 瀚, 王毛球, 翁宇庆. 高性能钢的M3组织调控理论与技术 [J]. 钢铁, 2010, 45(7): 1
|
28 |
Liang J H. Strengthening-toughening mechanism and microstructural control ultra high strength aluminum-containing medium manganese steel [D]. Beijing: University of Science and Technology Beijing, 2019
|
28 |
梁驹华. 超高强含铝中锰钢的强韧化机制及组织调控 [D]. 北京: 北京科技大学, 2019
|
29 |
Ghosh G, Olson G B. Kinetics of F.C.C.→B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation [J]. Acta Metall. Mater., 1994, 42: 3361
doi: 10.1016/0956-7151(94)90468-5
|
30 |
Jafary-Zadeh M, Aitken Z H, Tavakoli R, et al. On the controllability of phase formation in rapid solidification of high entropy alloys [J]. J. Alloys Compd., 2018, 748: 679
doi: 10.1016/j.jallcom.2018.03.165
|
31 |
Yang X S, Sun S, Zhang T Y. The mechanism of bcc α′ nucleation in single hcp ε laths in the fcc γ→hcp ε→bcc α′ martensitic phase transformation [J]. Acta Mater., 2015, 95: 264
doi: 10.1016/j.actamat.2015.05.034
|
32 |
Hou Z Y, Hedstrӧm P, Chen Q, et al. Quantitative modeling and experimental verification of carbide precipitation in a martensitic Fe-0.16wt%C-4.0wt%Cr alloy [J]. Calphad, 2016, 53: 39
doi: 10.1016/j.calphad.2016.03.001
|
33 |
Mukherjee M, Mohanty O N, Hashimoto S I, et al. Strain-induced transformation behaviour of retained austenite and tensile properties of TRIP-aided steels with different matrix microstructure [J]. ISIJ Int., 2006, 46: 316
doi: 10.2355/isijinternational.46.316
|
34 |
Ghosh G, Olson G B. Kinetics of f.c.c.→b.c.c. heterogeneous martensitic nucleation—II. Thermal activation [J]. Acta Metall. Mater., 1994, 42: 3371
doi: 10.1016/0956-7151(94)90469-3
|
35 |
He Y Q, Song S J, Du J L, et al. Thermo-kinetic connectivity by integrating thermo-kinetic correlation and generalized stability [J]. J. Mater. Sci. Technol., 2022, 127: 225
doi: 10.1016/j.jmst.2022.04.008
|
36 |
Wang T L, Liu F. Optimizing mechanical properties of magnesium alloys by philosophy of thermo-kinetic synergy: Review and outlook [J]. J. Magnes. Alloy., 2022, 10: 326
|
37 |
Wu P, Zhang Y B, Hu J Q, et al. Generalized stability criterion for controlling solidification segregation upon twin-roll casting [J]. J. Mater. Sci. Technol., 2023, 134: 163
doi: 10.1016/j.jmst.2022.06.042
|
38 |
Liu F, Huang L K. Thermo-kinetics of phase transformations [M]. Beijing: Science Press, 2023: 84
|
38 |
刘 峰, 黄林科. 相变热-动力学 [M]. 北京: 科学出版社, 2023: 84
|
39 |
Kantanen P, Anttila S, Karjalainen P, et al. Microstructures and mechanical properties of three medium-Mn steels processed via quenching and partitioning as well as austenite reversion heat treatments [J]. Mater. Sci. Eng., 2022, A847: 143341
|
40 |
Zou D Q, Li S H, He J, et al. The deformation induced martensitic transformation and mechanical behavior of quenching and partitioning steels under complex loading process [J]. Mater. Sci. Eng., 2018, A715: 243
|
41 |
Cai M H, Huang H S, Pan H J, et al. Microstructure and tensile properties of a Nb-Mo microalloyed 6.5Mn alloy processed by intercritical annealing and quenching and partitioning [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 665
doi: 10.1007/s40195-017-0597-0
|
42 |
Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Mater. Sci. Eng., 2016, A658: 400
|
43 |
Cai Z H, Ding H, Ying Z Y, et al. Microstructural evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel [J]. J. Mater. Eng. Perform., 2014, 23: 1131
doi: 10.1007/s11665-014-0866-2
|
44 |
Liu X Y, Han Y, Wei J H, et al. Effect of tempering temperature on microstructure and mechanical properties of a low carbon bainitic steel treated by quenching-partitioning-tempering (QPT) process [J]. J. Mater. Res. Technol., 2023, 23: 911
doi: 10.1016/j.jmrt.2023.01.061
|
45 |
Li Y, Li W, Xu C, et al. Investigation of hierarchical precipitation on bimodal-grained austenite and mechanical properties in quenching-partitioning-tempering steel [J]. Mater. Sci. Eng., 2020, A781: 139207
|
46 |
Li Y, Li W, Liu W Q, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel [J]. Acta Mater., 2018, 146: 126
doi: 10.1016/j.actamat.2017.12.035
|
47 |
Ou M G, Yang C L, Zhu J, et al. Influence of Cr content and Q-P-T process on the microstructure and properties of cold-coiled spring steel [J]. J. Alloys Compd., 2017, 697: 43
doi: 10.1016/j.jallcom.2016.12.134
|
48 |
Li Y, Li W, Min N, et al. Effects of hot/cold deformation on the microstructures and mechanical properties of ultra-low carbon medium manganese quenching-partitioning-tempering steels [J]. Acta Mater., 2017, 139: 96
doi: 10.1016/j.actamat.2017.08.003
|
49 |
Liu X B, Yan L G, Zhang X F. Suppressing precipitation during the reverse transformation from martensite to austenite in a cold-rolled austenite stainless steel [J]. Mater. Sci. Eng., 2021, A804: 140514
|
50 |
Yan S, Liang T S, Chen J Q, et al. A novel Cu-Ni added medium Mn steel: Precipitation of Cu-rich particles and austenite reversed transformation occurring simultaneously during ART annealing [J]. Mater. Sci. Eng., 2019, A746: 73
|
51 |
Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing [J]. Mater. Sci. Eng., 2019, A759: 90
|
52 |
Mallick P, Tewary N K, Ghosh S K, et al. Microstructure-tensile property correlation in 304 stainless steel after cold deformation and austenite reversion [J]. Mater. Sci. Eng., 2017, A707: 488
|
53 |
Sun B H, Fazeli F, Scott C, et al. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels [J]. Acta Mater., 2018, 148: 249
doi: 10.1016/j.actamat.2018.02.005
|
54 |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: 1430
doi: 10.1126/sciadv.aay1430
pmid: 32258395
|
55 |
Zhang Y M, Wang C Y, Reddy K M, et al. Study on the deformation mechanism of a high-nitrogen duplex stainless steel with excellent mechanical properties originated from bimodal grain design [J]. Acta. Mater., 2022, 226: 117670
doi: 10.1016/j.actamat.2022.117670
|
56 |
Lorthios J, Nguyen F, Gourgues A F, et al. Damage observation in a high-manganese austenitic TWIP steel by synchrotron radiation computed tomography [J]. Scr. Mater., 2010, 63: 1220
doi: 10.1016/j.scriptamat.2010.08.042
|
57 |
Xu S S, Li J P, Cui Y, et al. Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel [J]. Int. J. Plast., 2020, 128: 102677
doi: 10.1016/j.ijplas.2020.102677
|
58 |
Gwon H, Kim J K, Shin S, et al. The effect of vanadium micro-alloying on the microstructure and the tensile behavior of TWIP steel [J]. Mater. Sci. Eng., 2017, A696: 416
|
59 |
Wang J, Weyland M, Bikmukhametov I, et al. Transformation from cluster to nano-precipitate in microalloyed ferritic steel [J]. Scr. Mater., 2019, 160: 53
doi: 10.1016/j.scriptamat.2018.09.039
|
60 |
Shi C B, Zhu X, et al. Precipitation and growth of Laves phase and NbC during aging and its effect on tensile properties of a novel 15Cr-22Ni-1Nb austenitic heat-resistant steel [J]. Mater. Sci. Eng., 2022, A854: 143822
|
61 |
Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544
pmid: 23353630
|
62 |
Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
doi: 10.1038/nature14144
|
63 |
Liu S, Qian L H, Meng J Y, et al. Simultaneously increasing both strength and ductility of Fe-Mn-C twinning-induced plasticity steel via Cr/Mo alloying [J]. Scr. Mater., 2017, 127: 10
doi: 10.1016/j.scriptamat.2016.08.034
|
64 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
|
65 |
Ardell A J. Precipitation hardening [J]. Metall. Trans., 1985, 16A: 2131
|
66 |
Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15: 30
doi: 10.1179/026708399773002782
|
67 |
Jiang S H, Xu X Q, Li W, et al. Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels [J]. Acta Mater., 2021, 213: 116984
doi: 10.1016/j.actamat.2021.116984
|
68 |
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
doi: 10.1016/j.actamat.2015.08.076
|
69 |
Wu Y, Ma D, Li Q K, et al. Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction [J]. Acta Mater., 2017, 124: 478
doi: 10.1016/j.actamat.2016.11.029
|
70 |
Liu F, Yang G C. Effect of microstructure and γ′ precipitate from undercooled DD3 superalloy on mechanical properties [J]. J. Mater. Sci., 2002, 37: 2713
doi: 10.1023/A:1015821117177
|
71 |
Liu F, Yang G C. Rapid solidification of highly undercooled bulk liquid superalloy: Recent developments, future directions [J]. Int. Mater. Rev., 2006, 51: 145
doi: 10.1179/174328006X102484
|
72 |
Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
doi: 10.1126/science.aal5166
pmid: 28336664
|
73 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|