Please wait a minute...
金属学报  2024, Vol. 60 Issue (4): 495-508    DOI: 10.11900/0412.1961.2022.00377
  研究论文 本期目录 | 过刊浏览 |
强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响
蔡杰1,2(), 高杰1,2, 花银群2, 叶云霞2, 关庆丰3, 张小锋4
1 江苏大学 先进制造与现代装备技术工程研究院 镇江 212013
2 江苏大学 机械工程学院 镇江 212013
3 江苏大学 材料科学与工程学院 镇江 212013
4 广东省科学院新材料研究所 广州 510650
Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying
CAI Jie1,2(), GAO Jie1,2, HUA Yinqun2, YE Yunxia2, GUAN Qingfeng3, ZHANG Xiaofeng4
1 Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013, China
2 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
3 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
4 Institute of New Materials, Guangdong Academy of Science, Guangzhou 510650, China
引用本文:

蔡杰, 高杰, 花银群, 叶云霞, 关庆丰, 张小锋. 强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响[J]. 金属学报, 2024, 60(4): 495-508.
Jie CAI, Jie GAO, Yinqun HUA, Yunxia YE, Qingfeng GUAN, Xiaofeng ZHANG. Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying[J]. Acta Metall Sin, 2024, 60(4): 495-508.

全文: PDF(4038 KB)   HTML
摘要: 

为提高热障涂层黏结层高温抗氧化性能,本工作利用强流脉冲电子束(HCPEB)技术对低压等离子喷涂(LPPS)制备的NiCrAlY黏结层表面进行辐照改性处理,并揭示辐照改性效应对涂层抗氧化行为的影响。对比研究了HCPEB改性前后NiCrAlY涂层微观组织演变行为、1150℃静态氧化性能以及热生长氧化物(TGO)残余应力分布。微观分析结果表明,LPPS喷涂态涂层表面粗糙、存在较多未熔大颗粒;HCPEB改性态涂层表面平整光滑,形成厚约12 μm的致密重熔层,其内部形成丰富的变形结构以及Y-Al富集纳米分散颗粒。1150℃静态氧化实验及TGO残余应力测试结果表明,喷涂态涂层氧化150 h后氧化膜出现脱落、内氧化严重,应力陡然下降。相比之下,HCPEB改性态涂层在整个氧化周期内表面氧化膜均能稳态生长,未出现剥落迹象,其TGO应力以稳定且缓慢的趋势增加。结果表明,HCPEB辐照改性技术可以有效提高MCrAlY涂层的抗高温氧化性能。

关键词 低压等离子喷涂(LPPS)强流脉冲电子束(HCPEB)NiCrAlY涂层微观组织抗高温氧化性能    
Abstract

MCrAlY-type coatings are widely applied to thermally loaded structures of aero-engines as standalone overlays and as a bond-coat for a thermal barrier coating system, owing to their good resistance to high-temperature oxidation and hot corrosion. The thermally grown oxide (TGO) formed at the interface is the primary factor affecting the durability of MCrAlY coatings, which is closely related to the coating method used. The coating performed by low-pressure plasma spraying (LPPS) has great adhesion, high deposition rate, and low internal oxidation. However, the prepared defects of rough surface and porosity adversely affect the antioxidant performance. High-current pulsed electron beam (HCPEB), as a powerful tool for surface modification of different materials, can normalize the defects, polish the coating surface, and reconstruct microstructures, which is crucial to promote steady growth of the protective TGO. Therefore, in this work, NiCrAlY coatings were prepared on the surface of a nickel-based superalloy via LPPS and then irradiated via HCPEB. The microstructural evolution, static oxidation performance at 1150oC, and TGO residual stress distribution of NiCrAlY coatings before and after HCPEB modification were compared. The microstructural results show that the surface of the as-sprayed coating was rather rough and there were many unmelted large particles. After HCPEB irradiation, the surface of the irradiated coating was remelted, and became much flat and smooth. A rather dense and compact remelted layer approximately 12 μm in thickness was obtained. Furthermore, deformation structures and Y-Al enriched nanodispersed particles were introduced inside the remelted layer. The results of static oxidation and TGO residual stress show that after 150 h of oxidation, the oxide film formed on the as-sprayed coating fell off locally, accompanied by serious internal oxidation. Due to the cracking and peeling of the TGO, the internal stress was released. Conversely, the oxide film on the remelted surface of HCPEB irradiated coating grew steadily, and there was no trace of peeling, and the TGO stress increased steadily. The experimental results show that HCPEB is an effective and promising approach to drastically improve the high-temperature oxidation resistance of thermally sprayed MCrAlY coatings.

Key wordslow-pressure plasma spraying (LPPS)    high-current pulsed electron beam (HCPEB)    NiCrAlY coating    microstructure    high-temperature oxidation resistance
收稿日期: 2022-08-11     
ZTFLH:  TG174.44  
基金资助:国家自然科学基金联合基金项目(U1933124);中国博士后科学基金项目(2021M701476);江苏省研究生科研与实践创新计划项目(SJCX21_1699)
通讯作者: 蔡 杰,caijie@ujs.edu.cn,主要从事先进航空发动机热防护涂层的研究
Corresponding author: CAI Jie, associate professor, Tel: (0511)88797906, E-mail: caijie@ujs.edu.cn
作者简介: 蔡 杰,女,1987年生,副研究员,博士
ParameterValueUnit
Current1650A
Voltage51.6V
Powder feeding gas (Ar)110L·min-1
Powder feeding gas (H2)6L·min-1
Powder feedrate30g·min-1
Chamber pressure40kPa
Spray distance450mm
表1  低压等离子喷涂(LPPS)工艺参数
图1  强流脉冲电子束(HCPEB)改性前后NiCrAlY涂层的XRD谱
图2  HCPEB改性前后NiCrAlY涂层形貌及EDS分析
RegionOAlCrNiY
A2.8722.5519.3353.911.34
B5.4513.8340.9838.621.12
表2  图2f中各区域的EDS结果 (atomic fraction / %)
图3  HCPEB改性前后NiCrAlY涂层的TEM像及EDS分析
图4  HCPEB改性前后NiCrAlY涂层1150℃瞬态氧化阶段Al2O3的Raman特征峰谱线
图5  HCPEB改性前后NiCrAlY涂层1150℃瞬态氧化不同时间后的形貌
RegionOAlCrNiY
A47.4437.415.559.500.10
B58.0534.413.573.97-
C47.9738.174.549.32-
D49.9739.434.506.10-
E45.3631.086.2717.29-
F48.0339.544.797.64-
G42.2643.904.948.390.51
H55.1338.072.723.970.11
I49.4241.014.325.140.11
J49.7640.232.947.07-
表3  图5各区域的EDS结果 (atomic fraction / %)
图6  HCPEB改性前后NiCrAlY涂层1150℃氧化不同时间后的XRD谱
图7  喷涂态涂层1150℃氧化不同时间后的截面形貌及EDS分析
图8  改性态涂层1150℃氧化不同时间后的截面形貌及EDS分析
图9  热生长氧化物(TGO)残余应力随氧化时间的变化曲线
图10  HCPEB改性前后NiCrAlY涂层的TGO生长动力学及其拟合线
1 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296: 280
pmid: 11951028
2 Chen W R, Wu X, Marple B R, et al. TGO growth behaviour in TBCs with APS and HVOF bond coats[J]. Surf. Coat. Technol., 2008, 202: 2677
doi: 10.1016/j.surfcoat.2007.09.042
3 Chen W R, Wu X, Marple B R, et al. The growth and influence of thermally grown oxide in a thermal barrier coating[J]. Surf. Coat. Technol., 2006, 201: 1074
doi: 10.1016/j.surfcoat.2006.01.023
4 Lu J, Chen Y, Zhao C S, et al. Significantly improving the oxidation and spallation resistance of a MCrAlY alloy by controlling the distribution of yttrium[J]. Corros. Sci., 2019, 153: 178
doi: 10.1016/j.corsci.2019.03.051
5 Ma K K, Schoenung J M. Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: Homogeneity and growth rate of TGO[J]. Surf. Coat. Technol., 2011, 205: 5178
doi: 10.1016/j.surfcoat.2011.05.025
6 Liu G X, Huang G H, Luo X K, et al. The influence of surface shot peening on the isothermal oxidation behavior of NiCrAlYSi coating[J]. Acta. Metall. Sin., 2021, 57: 684
doi: 10.11900/0412.1961.2020.00353
6 刘冠熙, 黄光宏, 罗学昆 等. 表面喷丸处理对NiCrAlYSi涂层恒温氧化行为的影响[J]. 金属学报, 2021, 57: 684
doi: 10.11900/0412.1961.2020.00353
7 Li Y, Li C J, Yang G J, et al. Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying[J]. Surf. Coat. Technol., 2010, 205: 2225
doi: 10.1016/j.surfcoat.2010.08.144
8 Rabiei A, Evans A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta. Mater., 2000, 48: 3963
doi: 10.1016/S1359-6454(00)00171-3
9 Chen R R, Gong X, Wang Y, et al. Microstructure and oxidation behaviour of plasma-sprayed NiCoCrAlY coatings with and without Ta on Ti44Al6Nb1Cr alloys[J]. Corros. Sci., 2018, 136: 244
doi: 10.1016/j.corsci.2018.03.008
10 Xie S M, Lin S S, Shi Q, et al. A study on the mechanical and thermal shock properties of MCrAlY coating prepared by arc ion plating[J]. Surf. Coat. Technol., 2021, 413: 127092
doi: 10.1016/j.surfcoat.2021.127092
11 Lu J, Chen Y, Zhang H, et al. Superior oxidation and spallation resistant NiCoCrAlY bond coat via homogenizing the yttrium distribution[J]. Corros. Sci., 2019, 159: 108145
doi: 10.1016/j.corsci.2019.108145
12 Zhang B Y, Yang G J, Li C X, et al. Non-parabolic isothermal oxidation kinetics of low pressure plasma sprayed MCrAlY bond coat[J]. Appl. Surf. Sci., 2017, 406: 99
doi: 10.1016/j.apsusc.2017.02.123
13 Zhang Y J, Sun X F, Zhang Y C, et al. A comparative study of DS NiCrAlY coating and LPPS NiCrAlY coating[J]. Mater. Sci. Eng., 2003, A360: 65
14 Zakeri A, Bahmani E, Aghdam A S R, et al. A study on the effect of nano-CeO2 dispersion on the characteristics of thermally-grown oxide (TGO) formed on NiCoCrAlY powders and coatings during isothermal oxidation[J]. J. Alloys Compd., 2020, 835: 155319
doi: 10.1016/j.jallcom.2020.155319
15 Wang J L, Chen M H, Yang L L, et al. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition[J]. Appl. Surf. Sci., 2016, 366: 245
doi: 10.1016/j.apsusc.2016.01.088
16 Song P, Lu J S, Zhao B L, et al. The effects of reactive element additions on the oxidation properties of MCrAlY coating[J]. Mater. Rev., 2007, 21(7): 59
16 宋 鹏, 陆建生, 赵宝禄 等. 活性元素影响MCrAlY涂层氧化性能的研究进展[J]. 材料导报, 2007, 21(7): 59
17 Peng X, Jiang S M, Sun X D, et al. Cyclic oxidation and hot corrosion behaviors of a gradient NiCoCrAlYSi coating[J]. Acta. Metall. Sin., 2016, 52: 625
doi: 10.11900/0412.1961.2016.00013
17 彭 新, 姜肃猛, 孙旭东 等. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为[J]. 金属学报, 2016, 52: 625
18 Cai J, Guan Q F, Lv P, et al. Surface modification of CoCrAlY coating by high-current pulsed electron beam treatment under the “evaporation” mode[J]. Nucl. Instrum. Meth., 2014, 337B: 90
19 Cai J, Yang S Z, Ji L, et al. Surface microstructure and high temperature oxidation resistance of thermal sprayed CoCrAlY coating irradiated by high current pulsed electron beam[J]. Surf. Coat. Technol., 2014, 251: 217
doi: 10.1016/j.surfcoat.2014.04.029
20 Müller G, Schumacher G, Strauß D. Oxide scale growth on MCrAlY coatings after pulsed electron beam treatment[J]. Surf. Coat. Technol., 1998, 108-109: 43
doi: 10.1016/S0257-8972(98)00631-8
21 Zhang K M, Yang D Z, Zou J X, et al. Surface modification of 316L stainless steel by high current pulsed electron beam Ⅰ. Selective purification of surface and its mechanism[J]. Acta. Metall. Sin., 2007, 43: 64
21 张可敏, 杨大智, 邹建新 等. 316L不锈钢强流脉冲电子束表面改性研究 Ⅰ. 表面选择净化及机理[J]. 金属学报, 2007, 43: 64
22 Cai J, Yao Y M, Wei J Z, et al. Microstructure and transient oxidation behavior of NiCoCrAlYSiHf coating modified via high-current pulsed electron beam[J]. Surf. Coat. Technol., 2021, 422: 127499
doi: 10.1016/j.surfcoat.2021.127499
23 Xu B Q, Luo L R, Lu J, et al. Effect of residual stress on the spallation of the thermally-grown oxide formed on NiCoCrAlY coating[J]. Surf. Coat. Technol., 2020, 381: 125112
doi: 10.1016/j.surfcoat.2019.125112
24 Yang H Z, Zou J P, Shi Q, et al. Growth stress and interdiffusion analysis of NiCoCrAlYTa coating during oxidation[J]. Surf. Eng., 2021, 37: 808
doi: 10.1080/02670844.2020.1816133
25 Han Y J, Ye F X, Lu G X, et al. Residual stress evolution of thermally grown oxide in thermal barrier coatings deposited onto nickel-base superalloy and iron-base alloy with thermal exposure ageing[J]. J. Alloys Compd., 2014, 584:19
doi: 10.1016/j.jallcom.2013.08.144
26 Cai J, Yao Y M, Gao C Z, et al. Comparison of microstructure and oxidation behavior of NiCoCrAlYSi laser cladding coating before and after high-current pulsed electron beam modification[J]. J. Alloys Compd., 2021, 881: 160651
doi: 10.1016/j.jallcom.2021.160651
27 Qin Y, Zou J X, Dong C, et al. Temperature-stress fields and related phenomena induced by a high current pulsed electron beam[J]. Nucl. Instrum. Meth., 2004, 225B: 544
28 Zhang K M, Zou J X, Grosdidier T, et al. Crater-formation-induced metastable structure in an AISI D2 steel treated with a pulsed electron beam[J]. Vacuum, 2012, 86: 1273
doi: 10.1016/j.vacuum.2011.11.013
29 Grosdidier T, Zou J X, Bolle B, et al. Grain refinement, hardening and metastable phase formation by high current pulsed electron beam (HCPEB) treatment under heating and melting modes[J]. J. Alloys Compd., 2010, 504(): S508
doi: 10.1016/j.jallcom.2010.04.010
30 Chen H F, Zhang C, Xuan J H, et al. Effect of TGO evolution and element diffusion on the life span of YSZ/Pt-Al and YSZ/NiCrAlY coatings at high temperature[J]. Ceram. Int., 2020, 46: 813
doi: 10.1016/j.ceramint.2019.09.037
31 Hu Y, Cai C Y, Wang Y G, et al. YSZ/NiCrAlY interface oxidation of APS thermal barrier coatings[J]. Corros. Sci., 2018, 142: 22
doi: 10.1016/j.corsci.2018.06.035
32 Salam S, Hou P Y, Zhang Y D, et al. Compositional effects on the high-temperature oxidation lifetime of MCrAlY type coating alloys[J]. Corros. Sci., 2015, 95: 143
doi: 10.1016/j.corsci.2015.03.011
33 Ullah A, Khan A, Bao Z B, et al. Temperature effect on early oxidation behavior of NiCoCrAlY coatings: Microstructure and phase transformation[J]. Acta. Metall. Sin. (Eng. Lett.), 2022, 35: 975
34 Zhou B Y, He J, Zhou Q J, et al. Effects of laser shock processing on θ -Al2O3 to α-Al2O3 transformation and oxide scale morphology evolution in (γ′ + β) two-phase Ni-34Al-0.1Dy alloys[J]. J. Mater. Sci. Technol., 2022, 109: 157
doi: 10.1016/j.jmst.2021.09.028
35 Yang H Z, Zou J P, Shi Q, et al. Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at high temperature[J]. Corros. Sci., 2020, 175: 108889
doi: 10.1016/j.corsci.2020.108889
36 Wang H Y, Zuo D W, Wang M D, et al. Effects of nano-CeO2p on oxidation behaviors of NiCoCrAlY laser cladding coatings on Ni-based superalloys[J]. Acta. Metall. Sin., 2009, 45: 971
36 王宏宇, 左敦稳, 王明娣 等. 纳米CeO2p对镍基高温合金表面NiCoCrAlY激光熔覆涂层氧化行为的影响[J]. 金属学报, 2009, 45: 971
37 Tolpygo V K, Clarke D R, Murphy K S. Oxidation-induced failure of EB-PVD thermal barrier coatings[J]. Surf. Coat. Technol., 2001, 146-147: 124
doi: 10.1016/S0257-8972(01)01482-7
38 Yang H Z, Zou J P, Shi Q, et al. Analysis of the microstructural evolution and interface diffusion behavior of NiCoCrAlYTa coating in high temperature oxidation[J]. Corros. Sci., 2019, 153: 162
doi: 10.1016/j.corsci.2019.03.022
[1] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[2] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[3] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[4] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[5] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[6] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[14] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[15] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.