|
|
强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响 |
蔡杰1,2( ), 高杰1,2, 花银群2, 叶云霞2, 关庆丰3, 张小锋4 |
1 江苏大学 先进制造与现代装备技术工程研究院 镇江 212013 2 江苏大学 机械工程学院 镇江 212013 3 江苏大学 材料科学与工程学院 镇江 212013 4 广东省科学院新材料研究所 广州 510650 |
|
Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying |
CAI Jie1,2( ), GAO Jie1,2, HUA Yinqun2, YE Yunxia2, GUAN Qingfeng3, ZHANG Xiaofeng4 |
1 Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013, China 2 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China 3 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China 4 Institute of New Materials, Guangdong Academy of Science, Guangzhou 510650, China |
引用本文:
蔡杰, 高杰, 花银群, 叶云霞, 关庆丰, 张小锋. 强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响[J]. 金属学报, 2024, 60(4): 495-508.
Jie CAI,
Jie GAO,
Yinqun HUA,
Yunxia YE,
Qingfeng GUAN,
Xiaofeng ZHANG.
Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying[J]. Acta Metall Sin, 2024, 60(4): 495-508.
1 |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296: 280
pmid: 11951028
|
2 |
Chen W R, Wu X, Marple B R, et al. TGO growth behaviour in TBCs with APS and HVOF bond coats[J]. Surf. Coat. Technol., 2008, 202: 2677
doi: 10.1016/j.surfcoat.2007.09.042
|
3 |
Chen W R, Wu X, Marple B R, et al. The growth and influence of thermally grown oxide in a thermal barrier coating[J]. Surf. Coat. Technol., 2006, 201: 1074
doi: 10.1016/j.surfcoat.2006.01.023
|
4 |
Lu J, Chen Y, Zhao C S, et al. Significantly improving the oxidation and spallation resistance of a MCrAlY alloy by controlling the distribution of yttrium[J]. Corros. Sci., 2019, 153: 178
doi: 10.1016/j.corsci.2019.03.051
|
5 |
Ma K K, Schoenung J M. Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: Homogeneity and growth rate of TGO[J]. Surf. Coat. Technol., 2011, 205: 5178
doi: 10.1016/j.surfcoat.2011.05.025
|
6 |
Liu G X, Huang G H, Luo X K, et al. The influence of surface shot peening on the isothermal oxidation behavior of NiCrAlYSi coating[J]. Acta. Metall. Sin., 2021, 57: 684
doi: 10.11900/0412.1961.2020.00353
|
6 |
刘冠熙, 黄光宏, 罗学昆 等. 表面喷丸处理对NiCrAlYSi涂层恒温氧化行为的影响[J]. 金属学报, 2021, 57: 684
doi: 10.11900/0412.1961.2020.00353
|
7 |
Li Y, Li C J, Yang G J, et al. Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying[J]. Surf. Coat. Technol., 2010, 205: 2225
doi: 10.1016/j.surfcoat.2010.08.144
|
8 |
Rabiei A, Evans A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta. Mater., 2000, 48: 3963
doi: 10.1016/S1359-6454(00)00171-3
|
9 |
Chen R R, Gong X, Wang Y, et al. Microstructure and oxidation behaviour of plasma-sprayed NiCoCrAlY coatings with and without Ta on Ti44Al6Nb1Cr alloys[J]. Corros. Sci., 2018, 136: 244
doi: 10.1016/j.corsci.2018.03.008
|
10 |
Xie S M, Lin S S, Shi Q, et al. A study on the mechanical and thermal shock properties of MCrAlY coating prepared by arc ion plating[J]. Surf. Coat. Technol., 2021, 413: 127092
doi: 10.1016/j.surfcoat.2021.127092
|
11 |
Lu J, Chen Y, Zhang H, et al. Superior oxidation and spallation resistant NiCoCrAlY bond coat via homogenizing the yttrium distribution[J]. Corros. Sci., 2019, 159: 108145
doi: 10.1016/j.corsci.2019.108145
|
12 |
Zhang B Y, Yang G J, Li C X, et al. Non-parabolic isothermal oxidation kinetics of low pressure plasma sprayed MCrAlY bond coat[J]. Appl. Surf. Sci., 2017, 406: 99
doi: 10.1016/j.apsusc.2017.02.123
|
13 |
Zhang Y J, Sun X F, Zhang Y C, et al. A comparative study of DS NiCrAlY coating and LPPS NiCrAlY coating[J]. Mater. Sci. Eng., 2003, A360: 65
|
14 |
Zakeri A, Bahmani E, Aghdam A S R, et al. A study on the effect of nano-CeO2 dispersion on the characteristics of thermally-grown oxide (TGO) formed on NiCoCrAlY powders and coatings during isothermal oxidation[J]. J. Alloys Compd., 2020, 835: 155319
doi: 10.1016/j.jallcom.2020.155319
|
15 |
Wang J L, Chen M H, Yang L L, et al. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition[J]. Appl. Surf. Sci., 2016, 366: 245
doi: 10.1016/j.apsusc.2016.01.088
|
16 |
Song P, Lu J S, Zhao B L, et al. The effects of reactive element additions on the oxidation properties of MCrAlY coating[J]. Mater. Rev., 2007, 21(7): 59
|
16 |
宋 鹏, 陆建生, 赵宝禄 等. 活性元素影响MCrAlY涂层氧化性能的研究进展[J]. 材料导报, 2007, 21(7): 59
|
17 |
Peng X, Jiang S M, Sun X D, et al. Cyclic oxidation and hot corrosion behaviors of a gradient NiCoCrAlYSi coating[J]. Acta. Metall. Sin., 2016, 52: 625
doi: 10.11900/0412.1961.2016.00013
|
17 |
彭 新, 姜肃猛, 孙旭东 等. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为[J]. 金属学报, 2016, 52: 625
|
18 |
Cai J, Guan Q F, Lv P, et al. Surface modification of CoCrAlY coating by high-current pulsed electron beam treatment under the “evaporation” mode[J]. Nucl. Instrum. Meth., 2014, 337B: 90
|
19 |
Cai J, Yang S Z, Ji L, et al. Surface microstructure and high temperature oxidation resistance of thermal sprayed CoCrAlY coating irradiated by high current pulsed electron beam[J]. Surf. Coat. Technol., 2014, 251: 217
doi: 10.1016/j.surfcoat.2014.04.029
|
20 |
Müller G, Schumacher G, Strauß D. Oxide scale growth on MCrAlY coatings after pulsed electron beam treatment[J]. Surf. Coat. Technol., 1998, 108-109: 43
doi: 10.1016/S0257-8972(98)00631-8
|
21 |
Zhang K M, Yang D Z, Zou J X, et al. Surface modification of 316L stainless steel by high current pulsed electron beam Ⅰ. Selective purification of surface and its mechanism[J]. Acta. Metall. Sin., 2007, 43: 64
|
21 |
张可敏, 杨大智, 邹建新 等. 316L不锈钢强流脉冲电子束表面改性研究 Ⅰ. 表面选择净化及机理[J]. 金属学报, 2007, 43: 64
|
22 |
Cai J, Yao Y M, Wei J Z, et al. Microstructure and transient oxidation behavior of NiCoCrAlYSiHf coating modified via high-current pulsed electron beam[J]. Surf. Coat. Technol., 2021, 422: 127499
doi: 10.1016/j.surfcoat.2021.127499
|
23 |
Xu B Q, Luo L R, Lu J, et al. Effect of residual stress on the spallation of the thermally-grown oxide formed on NiCoCrAlY coating[J]. Surf. Coat. Technol., 2020, 381: 125112
doi: 10.1016/j.surfcoat.2019.125112
|
24 |
Yang H Z, Zou J P, Shi Q, et al. Growth stress and interdiffusion analysis of NiCoCrAlYTa coating during oxidation[J]. Surf. Eng., 2021, 37: 808
doi: 10.1080/02670844.2020.1816133
|
25 |
Han Y J, Ye F X, Lu G X, et al. Residual stress evolution of thermally grown oxide in thermal barrier coatings deposited onto nickel-base superalloy and iron-base alloy with thermal exposure ageing[J]. J. Alloys Compd., 2014, 584:19
doi: 10.1016/j.jallcom.2013.08.144
|
26 |
Cai J, Yao Y M, Gao C Z, et al. Comparison of microstructure and oxidation behavior of NiCoCrAlYSi laser cladding coating before and after high-current pulsed electron beam modification[J]. J. Alloys Compd., 2021, 881: 160651
doi: 10.1016/j.jallcom.2021.160651
|
27 |
Qin Y, Zou J X, Dong C, et al. Temperature-stress fields and related phenomena induced by a high current pulsed electron beam[J]. Nucl. Instrum. Meth., 2004, 225B: 544
|
28 |
Zhang K M, Zou J X, Grosdidier T, et al. Crater-formation-induced metastable structure in an AISI D2 steel treated with a pulsed electron beam[J]. Vacuum, 2012, 86: 1273
doi: 10.1016/j.vacuum.2011.11.013
|
29 |
Grosdidier T, Zou J X, Bolle B, et al. Grain refinement, hardening and metastable phase formation by high current pulsed electron beam (HCPEB) treatment under heating and melting modes[J]. J. Alloys Compd., 2010, 504(): S508
doi: 10.1016/j.jallcom.2010.04.010
|
30 |
Chen H F, Zhang C, Xuan J H, et al. Effect of TGO evolution and element diffusion on the life span of YSZ/Pt-Al and YSZ/NiCrAlY coatings at high temperature[J]. Ceram. Int., 2020, 46: 813
doi: 10.1016/j.ceramint.2019.09.037
|
31 |
Hu Y, Cai C Y, Wang Y G, et al. YSZ/NiCrAlY interface oxidation of APS thermal barrier coatings[J]. Corros. Sci., 2018, 142: 22
doi: 10.1016/j.corsci.2018.06.035
|
32 |
Salam S, Hou P Y, Zhang Y D, et al. Compositional effects on the high-temperature oxidation lifetime of MCrAlY type coating alloys[J]. Corros. Sci., 2015, 95: 143
doi: 10.1016/j.corsci.2015.03.011
|
33 |
Ullah A, Khan A, Bao Z B, et al. Temperature effect on early oxidation behavior of NiCoCrAlY coatings: Microstructure and phase transformation[J]. Acta. Metall. Sin. (Eng. Lett.), 2022, 35: 975
|
34 |
Zhou B Y, He J, Zhou Q J, et al. Effects of laser shock processing on θ -Al2O3 to α-Al2O3 transformation and oxide scale morphology evolution in (γ′ + β) two-phase Ni-34Al-0.1Dy alloys[J]. J. Mater. Sci. Technol., 2022, 109: 157
doi: 10.1016/j.jmst.2021.09.028
|
35 |
Yang H Z, Zou J P, Shi Q, et al. Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at high temperature[J]. Corros. Sci., 2020, 175: 108889
doi: 10.1016/j.corsci.2020.108889
|
36 |
Wang H Y, Zuo D W, Wang M D, et al. Effects of nano-CeO2p on oxidation behaviors of NiCoCrAlY laser cladding coatings on Ni-based superalloys[J]. Acta. Metall. Sin., 2009, 45: 971
|
36 |
王宏宇, 左敦稳, 王明娣 等. 纳米CeO2p对镍基高温合金表面NiCoCrAlY激光熔覆涂层氧化行为的影响[J]. 金属学报, 2009, 45: 971
|
37 |
Tolpygo V K, Clarke D R, Murphy K S. Oxidation-induced failure of EB-PVD thermal barrier coatings[J]. Surf. Coat. Technol., 2001, 146-147: 124
doi: 10.1016/S0257-8972(01)01482-7
|
38 |
Yang H Z, Zou J P, Shi Q, et al. Analysis of the microstructural evolution and interface diffusion behavior of NiCoCrAlYTa coating in high temperature oxidation[J]. Corros. Sci., 2019, 153: 162
doi: 10.1016/j.corsci.2019.03.022
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|