Please wait a minute...
金属学报  2024, Vol. 60 Issue (4): 509-521    DOI: 10.11900/0412.1961.2022.00066
  研究论文 本期目录 | 过刊浏览 |
Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理
黄建松, 裴文, 徐诗彤, 白勇, 姚美意(), 胡丽娟, 谢耀平, 周邦新
上海大学 材料研究所 上海 200072
Degradation Mechanism on Corrosion Resistance of High Nb-Containing Zirconium Alloys in Oxygen-Containing Steam
HUANG Jiansong, PEI Wen, XU Shitong, BAI Yong, YAO Meiyi(), HU Lijuan, XIE Yaoping, ZHOU Bangxin
Institute of Materials, Shanghai University, Shanghai 200072, China
引用本文:

黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. 高Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
Jiansong HUANG, Wen PEI, Shitong XU, Yong BAI, Meiyi YAO, Lijuan HU, Yaoping XIE, Bangxin ZHOU. Degradation Mechanism on Corrosion Resistance of High Nb-Containing Zirconium Alloys in Oxygen-Containing Steam[J]. Acta Metall Sin, 2024, 60(4): 509-521.

全文: PDF(5997 KB)   HTML
摘要: 

为探究高Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理,研究了Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb (质量分数,%)合金在除氧(DE)、300 μg/kg溶解氧(DO)、1000 μg/kg DO的400℃、10.3 MPa过热蒸汽中的腐蚀行为,采用SEM、TEM和XPS分析了氧化膜的显微组织和Nb元素价态。结果表明:Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb合金在400℃过热蒸汽中的耐腐蚀性能随着DO浓度升高而变差;合金在含氧蒸汽中耐腐蚀性能恶化的机理主要有2方面,一方面是DO加速了氧化膜中Nb元素的氧化,促进了Nb2+向Nb5+的转换;另一方面是DO促进了第二相氧化成m-Nb2O5以及非晶,进而促进了裂纹的萌生与生长,裂纹为O的扩散提供了快速通道,氧化膜显微组织的演化速率更快,最终加速了合金的腐蚀进程。

关键词 锆合金溶解氧腐蚀显微组织    
Abstract

In some water-cooled nuclear power reactors, a hydrogenation-deoxygenation device is generally not used to simplify the system and save space, which can increase dissolved oxygen (DO) concentration in primary loop water. The increase in DO concentration will inevitably affect the corrosion resistance of zirconium alloy cladding materials. In particular, DO will accelerate the corrosion of Nb-containing zirconium alloys, and the corrosion rate of zirconium alloys with high Nb content is sensitive to DO concentration. In exploring the deterioration mechanism of the corrosion resistance of high-Nb-containing zirconium alloys in oxygen-containing steam, the corrosion behavior of the Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb (mass fraction, %) alloy was studied in superheated steam through deoxygenation, with 300 μg/kg of DO and 1000 μg/kg of DO at 400oC and 10.3 MPa. The corrosion behavior was characterized by measuring the mass gain per unit area. SEM was used to observe the fracture morphology of the oxide film; TEM-EDS was used to observe and analyze the morphology, elemental distribution, and crystal structure of the alloy, second-phase particles (SPPs), and oxide film. The elemental distribution on the outer surface of the oxide film was analyzed by XPS, and the valence state of Nb was determined in accordance with the binding energy to analyze the influence of DO on the oxidation behavior of Nb in the oxide film. Results show that the corrosion resistance of the Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb alloy in superheated steam at 400oC deteriorates with the increase of DO concentration. The deterioration mechanism of the corrosion resistance of the alloy in oxygen-containing steam is proposed. On the one hand, DO accelerates the oxidation of Nb in the oxide film and promotes the conversion of Nb2+ to Nb5+. On the other hand, DO promotes the oxidation of SPPs to m-Nb2O5 (monoclinic) and amorphous phase, thereby promoting the initiation and growth of cracks. These newly generated cracks provide more channels for the diffusion of O2- and other oxidizing ions to accelerate the oxidation of SPPs near the cracks and the microstructural evolution of the oxide film, thereby accelerating the corrosion of the alloy.

Key wordszirconium alloy    dissolved oxygen    corrosion    microstructure
收稿日期: 2022-02-21     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金项目(51871141)
通讯作者: 姚美意,yaomeiyi@shu.edu.cn,主要从事核电用锆合金和ATF包壳材料研究
Corresponding author: YAO Meiyi, professor, Tel: (021)56338586, E-mail: yaomeiyi@shu.edu.cn
作者简介: 黄建松,男,1996年生,硕士
图1  Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb合金显微组织及第二相选区电子衍射花样和尺寸分布
图2  Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb合金在400℃、10.3 MPa的除氧(DE)、300 μg/kg溶解氧(DO)和1000 μg/kg DO过热蒸汽中的腐蚀增重曲线和双对数曲线
EnvironmentTransitionPre-transitionPost-transition
t0 / dwt0 / (mg·dm-2)k1 / (mg·dm-2·d-n1)n1k2 / (mg·dm-2·d-n2)n2
DE7257.394.780.461.380.86
300 μg·kg-1 DO4048.737.580.431.620.88
1000 μg·kg-1 DO4051.844.670.551.730.89
表1  合金在400℃、10.3 MPa的DE、300 μg/kg DO和1000 μg/kg DO过热蒸汽中的氧化动力学参数
图3  Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb合金在400℃、10.3 MPa不同含氧过热蒸汽中腐蚀42 d的氧化膜断口形貌
图4  Zr-0.75Sn-0.35Fe-0.15Cr-1.0Nb合金在400℃、10.3 MPa不同含氧过热蒸汽中腐蚀42 d的氧化膜横截面显微组织TEM明场像
图5  合金在400℃、10.3 MPa的DE过热蒸汽中腐蚀42 d的氧化膜横截面HAADF像及对应元素的EDS面分布图
图6  图5b中所示的SPP1~SPP3第二相的HRTEM像及FFT分析
图7  合金在400℃、10.3 MPa的300 μg/kg DO过热蒸汽中腐蚀42 d氧化膜截面显微组织HAADF像及对应元素的EDS面分布图
图8  图7b和c中所示的SPP1~SPP3第二相的HRTEM像及FFT分析
图9  合金在400℃、10.3 MPa的1000 μg/kg DO过热蒸汽中腐蚀42 d氧化膜截面显微组织HAADF像及对应元素EDS面分布图
图10  图9b和c中所示的SPP1~SPP3第二相HRTEM像及FFT分析
EnvironmentSPPsD / μmOxidation product
DESPP10.1t-ZrO2, m-Nb2O5
SPP20.7m-Nb2O5
SPP32.0Amorphous
300 μg·kg-1SPP11.0-
SPP20.4Amorphous, m-Nb2O5
SPP32.3m-ZrO2, m-Nb2O5
1000 μg·kg-1SPP10.1m-Nb2O5
SPP20.3m-Nb2O5
SPP32.8Amorphous
表2  合金在400℃、10.3 MPa不同环境中腐蚀42 d的氧化膜中第二相的氧化产物
图11  Ar+溅射180 s后300 DO/160 d和1000 DO/130 d样品氧化膜表面的Nb元素XPS精细谱及分峰拟合图
Time300 DO / 160 d1000 DO / 130 d
sNb2+Nb5+Nb2+Nb5+
04.9895.052.3997.61
909.3290.681.7598.25
18014.2985.710.9599.05
表3  300 DO/160 d与1000 DO/130 d样品氧化膜中Nb元素不同价态占比 (atomic fraction / %)
1 Cao Y L, Wang S W, Xiong W B, et al. Features and application analysis of the small modular reactors[J]. Nucl. Electron. Detect. Technol., 2014, 34: 801
1 曹亚丽, 王韶伟, 熊文彬 等. 小型模块化反应堆特性及应用分析[J]. 核电子学与探测术, 2014, 34: 801
2 Bradhurst D H, Shirvington P J, Heuer P M. The effects of radiation and oxygen on the aqueous oxidation of zirconium and its alloys at 290oC[J]. J. Nucl. Mater., 1973, 46: 53
doi: 10.1016/0022-3115(73)90122-0
3 Motta A T, Comstock R J, Count A. Corrosion of zirconium alloys used for nuclear fuel cladding[J]. Annu. Rev. Mater. Res., 2015, 45: 311
doi: 10.1146/matsci.2015.45.issue-1
4 Kumar M K, Aggarwal S, Beniwal D, et al. Localized oxidation of zirconium alloys in high temperature and pressure oxidizing environments of nuclear reactors[J]. Mater. Corros., 2014, 65: 244
5 Cox B. Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys[J]. J. Nucl. Mater., 2005, 336: 331
doi: 10.1016/j.jnucmat.2004.09.029
6 Jeong Y H, Park S Y, Lee M H, et al. Out-of-pile and in-pile performance of advanced zirconium alloys (HANA) for high burn-up fuel[J]. J. Nucl. Sci. Mater., 2006, 43: 977
7 Zhou B X, Yao M Y, Li Z K, et al. Optimization of N18 zirconium alloy for fuel cladding of water reactors[J]. J. Mater. Sci. Technol., 2012, 28: 606
8 Liu J Z. Structure Nuclear Materials[M]. Beijing: Chemical Industry Press, 2007: 56
8 刘建章. 核结构材料[M]. 北京: 化学工业出版社, 2007: 56
9 Kim Y S, Kim S K, Bang J G, et al. Effects of Sn and Nb on massive hydriding kinetics of Zr ± XSn ± YNb alloy[J]. J. Nucl. Mater., 2000, 279: 335
doi: 10.1016/S0022-3115(99)00281-0
10 Kim H G, Yong H J, Kim T H. Effect of isothermal annealing on the corrosion behavior of Zr-xNb alloys[J]. J. Nucl. Mater., 2004, 326: 125
doi: 10.1016/j.jnucmat.2004.01.015
11 Dai J X, Gong Z M, Xu S T, et al. In situ study on the initial oxidation behavior of zirconium alloys with near-ambient pressure XPS[J]. Acta Phys. Chim. Sin., 2022, 38: 76
11 戴久翔, 龚忠苗, 徐诗彤 等. 锆合金初始氧化行为的原位近常压XPS研究[J]. 物理化学学报, 2022, 38: 76
12 Jeong Y H, Kim H G, Kim D J, et al. Influence of Nb content in the α-matrix on the corrosion behavior of Zr-xNb binary alloys[J]. J. Nucl. Mater., 2003, 323: 72
doi: 10.1016/j.jnucmat.2003.08.031
13 Wang B Y, Zhou B X, Wang Z, et al. Corrosion resistance of Zr-0.72Sn-0.32Fe-0.14Cr-xNb alloys in 500oC superheated steam[J]. Acta. Metall. Sin., 2015, 51: 1545
13 王波阳, 周邦新, 王 桢 等. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500℃过热蒸汽中的耐腐蚀性能[J]. 金属学报, 2015, 51: 1545
doi: 10.11900/0412.1961.2015.00254
14 Wu Y, Chen B, Lin X D, et al. Corrosion behavior of 90Nb-10Zr alloy in 500oC superheated steam[J]. Rare. Met. Mater. Eng., 2021, 50: 4437
14 吴 悦, 陈 兵, 林晓冬 等. 90Nb-10Zr合金在500℃过热蒸气中的腐蚀行为[J]. 稀有金属材料与工程, 2021, 50: 4437
15 Yao M Y, Zhou B X. Mechanism of the accelerated corrosion of Zr-Nb alloys in lithiated water from the viewpoint of β-Nb oxidation[J]. J. Shanghai Univ.: Nat. Sci. Ed., 2020, 26: 681
15 姚美意, 周邦新. 从β-Nb氧化角度探究Zr-Nb系锆合金在LiOH水溶液中腐蚀加速的机理[J]. 上海大学学报(自然科学版), 2020, 26: 681
doi: 10.12066/j.issn.1007-2861.2258
16 Xu S T, Huang J S, Pei W, et al. Effect of oxygen content in 400oC superheated steam on the corrosion resistance of Zr-xSn-0.35Fe-0.15Cr-0.15Nb alloys[J]. Corros. Sci., 2022, 198: 110135
doi: 10.1016/j.corsci.2022.110135
17 Kumar M K, Aggarwal S, Kain V, et al. Effect of dissolved oxygen on oxidation and hydrogen pick up behaviour—Zircaloy vs Zr-Nb alloys[J]. Nucl. Eng. Des., 2010, 240: 985
doi: 10.1016/j.nucengdes.2009.12.021
18 Wei T G, Lin J K, Long C S, et al. Effect of dissolved oxygen in steam on the corrosion behaviors of zirconium alloys[J]. Acta. Metall. Sin., 2016, 52: 209
doi: 10.11900/0412.1961.2015.00219
18 韦天国, 林建康, 龙冲生 等. 蒸汽中的溶解氧对锆合金腐蚀行为的影响[J]. 金属学报, 2016, 52: 209
doi: 10.11900/0412.1961.2015.00219
19 Liu Q D, Zhang H, Zeng Q F, et al. Pre-transition corrosion behavior of SZA-4 and ZIRLO alloys in dissolved oxygen aqueous condition at 360oC[J]. J. Mech. Eng. 2019, 55(8): 88
19 刘庆冬, 张 浩, 曾奇锋 等. SZA-4和ZIRLO锆合金在360℃含氧水环境中的腐蚀行为[J]. 机械工程学报, 2019, 55(8): 88
doi: 10.3901/JME.2019.08.088
20 Qin W, Nam C, Li H L, et al. Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance[J]. Acta Mater., 2007, 55: 1695
doi: 10.1016/j.actamat.2006.10.030
21 Olsson C O A, Landolt D. Atmospheric oxidation of a Nb-Zr alloy studied with XPS[J]. Corros. Sci., 2004, 46: 213
doi: 10.1016/S0010-938X(03)00139-2
22 Hauffe K. Oxidation of Metal.[M]. New York: Plenum Press, 1965: 176
23 Li M S. High Temperature Corrosion of Metal[M]. Beijing: Metallurgical Industry Press, 2001: 55
23 李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 55
24 Li T F. High Temperature Oxidation and Thermal Corrosion in Metals[M]. Beijing: Chemical Industry Press, 2003: 18
24 李铁藩. 金属高温氧化和热腐蚀.[M]. 北京: 化学工业出版社, 2003: 18
25 Cao X X, Yao M Y, Peng J C, et al. Corrosion behavior of Zr(Fe x, Cr1- x)2 alloys in 400oC superheated steam[J]. Acta Metall. Sin, 2011, 47: 882
25 曹潇潇, 姚美意, 彭建超 等. Zr(Fe x, Cr1- x)2合金在400℃过热蒸汽中的腐蚀行为[J]. 金属学报, 2011, 47: 882
doi: 10.3724/SP.J.1037.2011.00251
26 Yang W D. Reactor Materials Science.[M]. 2nd Ed., Beijing: Atomic Energy Press, 2006: 123
26 杨文斗. 反应堆材料学[M]. 第二版, 北京: 原子能出版社, 2006: 123
27 Zhou B X, Li Q, Yao M Y, et al. Microstructure of oxide films formed on zircaloy-4[J]. Corros. Prot., 2009, 30: 589
27 周邦新, 李 强, 姚美意 等. Zr-4合金氧化膜的显微组织研究[J]. 腐蚀与防护, 2009, 30: 589
28 Liu W Q, Li Q, Zhou B X, et al. Effect of heat treatment on the corrosion resistance for new zirconium-based alloy[J]. Nucl. Power Eng., 2005, 26: 249
28 刘文庆, 李 强, 周邦新 等. 热处理制度对N18新锆合金耐腐蚀性能的影响[J]. 核动力工程, 2005, 26: 249
[1] 倪明杰, 刘仁慈, 周浩浩, 杨超, 葛术宇, 刘冬, 史凤岭, 崔玉友, 杨锐. 磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响[J]. 金属学报, 2024, 60(2): 261-272.
[2] 曾云鹏, 严伟, 史显波, 闫茂成, 单以银, 杨柯. Cu含量对管线钢耐微生物腐蚀性能的影响[J]. 金属学报, 2024, 60(1): 43-56.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[6] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[7] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[8] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[9] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[10] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[11] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.