Please wait a minute...
金属学报  2024, Vol. 60 Issue (6): 770-776    DOI: 10.11900/0412.1961.2022.00337
  研究论文 本期目录 | 过刊浏览 |
一种第三代单晶高温合金的组织稳定性与持久性能
刘金来1(), 孙晶霞1,2, 孟杰1, 李金国1
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Microstructural Stability and Stress Rupture Properties of a Third-Generation Ni Base Single Crystal Supalloy
LIU Jinlai1(), SUN Jingxia1,2, MENG Jie1, LI Jinguo1
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

刘金来, 孙晶霞, 孟杰, 李金国. 一种第三代单晶高温合金的组织稳定性与持久性能[J]. 金属学报, 2024, 60(6): 770-776.
Jinlai LIU, Jingxia SUN, Jie MENG, Jinguo LI. Microstructural Stability and Stress Rupture Properties of a Third-Generation Ni Base Single Crystal Supalloy[J]. Acta Metall Sin, 2024, 60(6): 770-776.

全文: PDF(1505 KB)   HTML
摘要: 

针对第三代单晶高温合金研制过程中析出少量拓扑密排相(TCP相)和中温性能偏低的问题,采用电子空位数计算,确定了对合金组织稳定性影响最显著的元素为Al,通过将Al含量降低0.4%,合金在1100℃、1000 h长期时效后完全无TCP相析出,实现了合金良好的组织稳定性。根据中温变形机制,认为合金中温持久性能偏低的原因为合金层错能偏低。确定合金成分的优化方案为在Al含量降低0.4%的基础上,少量降低Re和Co的含量以提高合金的层错能,通过将Re和Co含量分别降低0.25%和1%,合金在760℃、800 MPa的持久寿命由40 h提高到150 h,且合金的高温持久性能保持不变。在此基础上,确定了组织稳定且中/高温性能平衡的一种第三代单晶合金的最佳成分,并讨论了稳定合金组织和提高中温蠕变性能的原因。

关键词 第三代单晶高温合金组织稳定性持久性能Re变形机制    
Abstract

Single-crystal superalloys have been developed to the 5th generation to improve their temperature capacity. Thus, a rare metal Ru is doped to the 4th and 5th generations based on the 6%Re (with the same mass fraction) contained in third-generation superalloys. Compared with Re addition in low-generation superalloys, improvement of temperature capacity decreases with Ru addition in high-generation superalloys; however, the cost of superalloys containing Ru has increased significantly. Therefore, considerable attention must be paid to the development of third-generation single-crystal superalloys because of their superior cost performance. Thus, considering the slight precipitation of the topologically close-packed (TCP) phase and low properties at the intermediate temperature of third-generation single-crystal superalloys, Al is considered as a significant element affecting microstructure stability, which is determined by calculating the number of electron vacancy (Nv). By reducing 0.4%Al, no TCP phase is precipitated in the superalloy after long-term thermal exposure at 1100oC for 1000 h; therefore, good microstructure stability is obtained. The concentration of Re and Co is decreased slightly to increase the stacking fault energy of the superalloy and to enhance the properties at intermediate temperature. The stress rupture life at 760oC and 800 MPa extends from 40 h to 150 h by reducing 0.4%Al followed with reduction of 0.25%Re and 1%Co. Moreover, the stress rupture properties at high temperature remain unchanged. Based on the abovementioned research, a third-generation single-crystal superalloy is developed, and the causes of stabilization of the microstructure and improvement to properties at intermediate temperature are also discussed.

Key wordsthird-generation single crystal superalloy    microstructure stability    stress rupture property    Re    deformation mechanism
收稿日期: 2022-07-09     
ZTFLH:  TG113.25  
基金资助:国家科技重大专项项目(2019-Ⅶ-0019-0161);国家重点研发计划项目(2017YFA0700704);国家自然科学基金项目(51971214);四川省科技计划项目(2022YFSY0016)
通讯作者: 刘金来,jlliu@imr.ac.cn,主要从事单晶高温合金研究;
Corresponding author: LIU Jinlai, senior engineer, Tel: (024)23971767, E-mail: jlliu@imr.ac.cn
作者简介: 刘金来,男,1973年生,高级工程师,博士
图1  初始成分单晶高温合金在1100℃长期时效100和1000 h后微观组织的SEM像
图2  各元素含量分别降低0.1%时电子空位数的变化量(ΔNv)
Alloyγ' phaseγ phaseμ phase
Original composition58.2835.915.80
Al content reduction 0.4%52.2542.894.86
Re content reduction 0.4%58.2536.605.15
表1  Al和Re含量分别降低0.4%时合金中各组成相的含量与初始成分的对比 (%)
图3  Al含量降低0.4%后的合金在1100℃长期时效100和1000 h后微观组织的SEM二次电子像
图4  优化成分与初始成分合金不同温度下层错能的热力学计算结果
图5  初始成分与优化成分合金在760℃、800 MPa条件下的蠕变曲线
图6  初始成分与优化成分合金在760℃、800 MPa条件下蠕变1 h后位错组态的TEM像
图7  优化成分合金760℃、800 MPa的持久寿命与试样轴向取向的关系
1 Walston S, Cetel A, MacKay R, et al. Joint development of a fourth generation single crystal superalloy [A]. Superalloys 2004 [C]. Warrendale: TMS, 2004: 15
2 Sato A, Harada H, Yeh A C, et al. A 5th generation SC superalloy with balanced high temperature properties and processability [A]. Superalloys 2008 [C]. Champion: TMS, 2008: 131
3 Erickson G L. The development and application of CMSX®-10 [A]. Superalloys 1996 [C]. Warrendale: TMS, 1996: 35
4 Walston W S, O'Hara K S, Ross E W, et al. René N6: Third generation single crystal superalloy [A]. Superalloys 1996 [C]. Warrendale: TMS, 1996: 27
5 Argence D, Vemault C, Desvallees Y, et al. MC-NG: A 4th generation single-crystal superalloy for future aeronautical turbine blades and vanes [A]. Superalloys 2000 [C]. Warrrendale: TMS, 2000: 829
6 Rame J, Caron P, Locq D, et al. Development of AGAT, a third-generation nickel-based superalloy for single crystal turbine blade applications [A]. Proceedings of the 14th International Symposium on Superalloys [C]. Cham: Springer, 2020: 31
7 Fuchs G E. Improvement of creep strength of a third generation, single-crystal Ni-base superalloy by solution heat treatment [J]. J. Mater. Eng. Perform., 2002, 11: 19
8 Zhou H, Okada I, Ro Y, et al. Thermomechanical fatigue behavior of the third-generation, single-crystal superalloy TMS-75: Deformation structure [J]. Metall. Mater. Trans., 2004, 35A: 1779
9 Li J R, Liu S Z, Shi Z X, et al. Third generation single crystal superalloy DD9 [J]. J Iron Steel Res., 2011, 23(suppl. 2) : 337
9 李嘉荣, 刘世忠, 史振学 等. 第三代单晶高温合金DD9 [J]. 钢铁研究学报, 2011, 23(): 337
10 Xiong J Y, Long A P, Zhang J T, et al. Microstructure and properties of third generation single crystal superalloy WZ30 [J]. Rare Met. Mater. Eng., 2021, 50: 3995
10 熊江英, 龙安平, 张建庭 等. 一种新型第三代单晶高温合金WZ30组织与性能的研究 [J]. 稀有金属材料与工程, 2021, 50: 3995
11 Caldwell E C, Fela F J, Fuchs G E. Segregation of elements in high refractory content single crystal nickel based superalloys [A]. Superalloys 2004 [C]. Champion: TMS, 2004: 811
12 Kearsey R M, Beddoes J C, Jaansalu K M, et al. The effects of Re, W and Ru on microsegregation behaviour in single crystal superalloy systems [A]. Superalloys 2004 [C]. Champion: TMS, 2004: 801
13 Fuchs G E. Solution heat treatment response of a third generation single crystal Ni-base superalloy [J]. Mater. Sci. Eng., 2001, A300: 52
14 Diologent F, Caron P. On the creep behavior at 1033K of new generation single-crystal superalloys [J]. Mater. Sci. Eng., 2004, A385: 245
15 Wilson A S. Formation and effect of topologically close-packed phases in nickel-base superalloys [J]. Mater. Sci. Technol., 2017, 33: 1108
16 Seiser B, Drautz R, Pettifor D G. TCP phase predictions in Ni-based superalloys: Structure maps revisited [J]. Acta Mater., 2011, 59: 749
17 Huang S Y, An K, Gao Y, et al. Determination of γ/γ' lattice misfit in Ni-based single-crystal superalloys at high temperatures by neutron diffraction [J]. Metall. Mater. Trans., 2018, 49A: 740
18 Rae C M F, Matan N, Reed R C. The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750oC and 750 MPa [J]. Mater. Sci. Eng., 2001, A300: 125
19 Ma S, Carroll L, Pollock T M. Development of γ phase stacking faults during high temperature creep of Ru-containing single crystal superalloys [J]. Acta Mater., 2007, 55: 5802
20 Kumar K, Sankarasubramanian R, Waghmare U V. Tuning planar fault energies of Ni3Al with substitutional alloying: First-principles description for guiding rational alloy design [J]. Scr. Mater., 2018, 142: 74
21 Kong Y H, Chen Q Z. Effect of minor additions on the formation of TCP phases in modified RR2086 SX superalloys [J]. Mater. Sci. Eng., 2004, A366: 135
22 Gao S, Liu Z Q, Li C F, et al. In situ TEM investigation on the precipitation behavior of μ phase in Ni-base single crystal superalloys [J]. Acta Mater., 2016, 110: 268
23 Huis In't Veld A J, Boom G, Bronsveld P M, et al. Superlattice intrinsic stacking faults in γ′ precipitates [J]. Scr. Metall., 1985, 19: 1123
24 Milligan W W, Antolovich S D. The mechanisms and temperature dependence of superlattice stacking fault formation in the single-crystal superalloy PWA 1480 [J]. Metall. Trans., 1991, 22A: 2309
25 Knowles D M, Chen Q Z. Superlattice stacking fault formation and twinning during creep in γ/γ' single crystal superalloy CMSX-4 [J]. Mater. Sci. Eng., 2003, A340: 88
26 Gunturi S S K, MacLachlan D W, Knowles D M. Anisotropic creep in CMSX-4 in orientations distant from 〈001〉 [J]. Mater. Sci. Eng., 2000, A289: 289
27 Li J R, Dong J M, Han M, et al. Effects of sand blasting on surface integrity and high cycle fatigue properties of DD6 single crystal superalloy [J]. Acta Metall. Sin., 2023, 59: 1201
doi: 10.11900/0412.1961.2023.00196
27 李嘉荣, 董建民, 韩 梅 等. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响 [J]. 金属学报, 2023, 59: 1201
doi: 10.11900/0412.1961.2023.00196
28 Reppich B. Some new aspects concerning particle hardening mechanisms in γ' precipitating Ni-base alloys—I. Theoretical concept [J]. Acta Metall., 1982, 30: 87
29 Mackay R A, Maier R D. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals [J]. Metall. Trans., 1982, 13A: 1747
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[4] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[5] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[6] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[7] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[8] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[9] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[10] 余倩, 陈雨洁, 方研. 高熵合金中的元素分布规律及其作用[J]. 金属学报, 2021, 57(4): 393-402.
[11] 刘健, 彭钦, 谢建新. 选区激光熔化René 88DT高温合金的晶粒组织及冶金缺陷调控[J]. 金属学报, 2021, 57(2): 191-204.
[12] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[13] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[14] 郑锦灿, 刘润聪, 王晓东. 热镀锌工艺中锌液表面流速的在线电磁测量[J]. 金属学报, 2020, 56(7): 929-936.
[15] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.