Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 929-936    DOI: 10.11900/0412.1961.2020.00024
  本期目录 | 过刊浏览 |
热镀锌工艺中锌液表面流速的在线电磁测量
郑锦灿, 刘润聪(), 王晓东()
中国科学院大学材料科学与光电技术学院材料科学与光电工程中心 北京 100049
Online Electromagnetic Measurement of Molten Zinc Surface Velocity in Hot Galvanized Process
ZHENG Jincan, LIU Runcong(), WANG Xiaodong()
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(2009 KB)   HTML
摘要: 

通过Lorentz力测速方法对热镀锌工艺中锌锅内锌液流速进行了测量研究。该方法具有非接触式、在线、连续测量的特点和优势。设计了适合镀锌工艺特点的电磁流速测量仪,通过数值建模和模拟实验进行了校准,并进行了工厂测试,分析了锌液的流动行为和流场特点。测量结果表明,该方法可对锌液的表面流速进行实时、在线、定量的测量,为冶金工业生产中高温金属液流速监测提供了一种新手段。

关键词 热镀锌锌锅锌液流速电磁感应Lorentz力测速    
Abstract

The behavior of zinc flow in the zinc bath plays an important role in hot galvanizing process, which has an important influence on the temperature distribution, the composition of zinc coat, the control of air knife, and so on, thus affecting the surface quality of zinc products (surface oxidation, rake slag). However, due to the high temperature, strong activity, opacification of the zinc bath and harsh, complex industrial environment, it is difficult to directly measure the flow behavior of zinc in the zinc bath through conventional methods. In this work, based on the principle of electromagnetic induction, Lorentz force velocimetry (LFV) method was used to measure and analyze the velocity of zinc flow in the bath during the galvanizing process for the first time. The LFV has the characteristics and advantages of non-contact, online and continuous measurement, and can realize the real-time quantitative measurement of molten metal flow by reasonable design and ingenious implementation. The key parameters of LFV, such as the gap between device and molten zinc, penetration depth and geometry of the applied model, were discussed through numerical analysis, the LFV device suitable for the characteristics of zinc plating process was designed, and the in-plant measurement was carried out. The results show that the fluctuation range of zinc flow velocity in the zinc bath is almost 0.13~0.20 m/s, which is within typical range referenced in previous studies. In addition, the flow behavior and flow field characteristics of zinc liquid were analyzed, and these discussions reflect the capacity of zinc slag or ash in the zinc flow at the monitoring position. The work promoted in this study revealed that this LFV method can measure the surface velocity of zinc liquid in real time, on-line and quantitatively, which provides a new way for the velocity monitoring of high temperature liquid metal in metallurgical industry.

Key wordshot galvanized    zinc bath    molten zinc flow velocity    electromagnetic induction    Lorentz force velocimetry
收稿日期: 2020-01-16     
ZTFLH:  TG115.9  
基金资助:中国科学院大学一流学科建设项目(111800XX62)
通讯作者: 刘润聪,王晓东     E-mail: liuruncong@ucas.ac.cn;xiaodong.wang@ucas.ac.cn
Corresponding author: LIU Runcong,WANG Xiaodong     E-mail: liuruncong@ucas.ac.cn;xiaodong.wang@ucas.ac.cn
作者简介: 郑锦灿,男,1985年生,博士生

引用本文:

郑锦灿, 刘润聪, 王晓东. 热镀锌工艺中锌液表面流速的在线电磁测量[J]. 金属学报, 2020, 56(7): 929-936.
Jincan ZHENG, Runcong LIU, Xiaodong WANG. Online Electromagnetic Measurement of Molten Zinc Surface Velocity in Hot Galvanized Process. Acta Metall Sin, 2020, 56(7): 929-936.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2020.00024      或      https://www.ams.org.cn/CN/Y2020/V56/I7/929

图1  Lorentz力测速仪(LFV)测速原理图
图2  Lorentz力测速仪结构图
图3  锌液流速测量方案(俯视图)
图4  锌板的数值模型示意图
图5  数值模拟条件下锌板厚度(δ)对数值校准结果的影响
图6  数值模拟条件下锌板边长(a)对数值校准结果的影响
图7  数值模拟条件下LFV测量装置与固体锌板边缘之间相对位置对测试结果的影响
图8  LFV测量装置与锌板之间相对位置对感应涡电流密度(j)分布的影响
图9  数值模拟条件下Lorentz力(Fs)与锌板速率(vs)关系数值计算数据及校准曲线
图10  锌锅内锌液流速现场测试位置和实验结果
图11  锌锅内锌液流速方向与测量装置位置示意图
图12  锌锅内锌液流速测量数据频谱分析
图13  锌锅内锌液流速测量数据湍流动能分析
[1] Zhang L Y, Li J, Zuo L. Current process and technology investigation situation in the field of steel strip continuous hot-dip galvanization [J]. Steel Rolling, 2005, 22(2): 38
[1] (张理扬, 李 俊, 左 良. 带钢连续热镀锌工艺技术的现状 [J]. 轧钢, 2005, 22(2): 38)
[2] Liu F, Zhao Z W. Temperature analysis of the molten zinc in zinc pot of continuous hot dip galvanized process [J]. J. Inner Mongolia Univ. Sci. Technol., 2011, 30: 18
[2] (刘 芳, 赵增武. 连续热镀锌工艺中锌锅内锌液温度分析 [J]. 内蒙古科技大学学报, 2011, 30: 18)
[3] Gao X C, Fan H B, Guan L K. The control effective aluminum's theory and relatively technical developing in the continuous galvanizing process [J]. Bengang Technol., 2006, (4): 22
[3] (高兴昌, 范洪彬, 关立凯. 控制带钢连续热镀锌工艺中有效铝的研究及当前技术进展 [J]. 本钢技术, 2006, (4): 22)
[4] Li T T, Li T F, Tang Q, et al. Effect of strip-entry temperature on coating during continuous hot-dip galvanizing process [J]. Heat Treat. Met., 2014, 39(9): 48
[4] (李婷婷, 李腾飞, 汤 茜等. 带钢入锌锅温度对连续热镀锌层的影响 [J]. 金属热处理, 2014, 39(9): 48)
[5] Mao F F, Dong A P, Han L Y, et al. Effects of zinc bath outside circulating purification on fluid and heat transfer of continuous hot dip galvanizing pot [J]. Hot Work. Technol., 2017, 46(8): 38
[5] (冒飞飞, 董安平, 韩兰英等. 锌液体外循环净化对连续热镀锌锅流动与传热的影响 [J]. 热加工工艺, 2017, 46(8): 38)
[6] Yang M, Mi L J, Shan Y G, et al. Numerical simulation of mixed convection for low Prandtl number fluid in galvanizing bath [J]. J. Eng. Thermophys., 2008, 29: 115
[6] (杨 茉, 米丽娟, 单彦广等. 锌锅中低Pr流体混合对流的数值模拟 [J]. 工程热物理学报, 2008, 29: 115)
[7] Yang M, Kang H B, Mi L J. Oscillation of mixed convection in galvanizing bath for low Prandtl number fluid [J]. J. Eng. Thermophys., 2008, 29: 2708
[7] (杨 茉, 康宏博, 米丽娟. 锌锅中低Pr流体混合对流的自维持振荡 [J]. 工程热物理学报, 2008, 29: 2708)
[8] Zhu L. Numerical study of thermal and flow fields in a galvanizing zinc pot [D]. Shanghai: East China University of Science and Technology, 2015
[8] (朱 路. 热镀锌锌锅中的流动与传热数值研究 [D]. 上海: 华东理工大学, 2015)
[9] Ajersch F, Ilinca F, Hétu J F. Simulation of flow in a continuous galvanizing bath: Part I. Thermal effects of ingot addition [J]. Metall. Mater. Trans., 2004, 35B: 161
[10] Lee S J, Kim S, Koh M S, et al. Flow field analysis inside a molten Zn pot of the continuous hot-dip galvanizing process [J]. ISIJ Int., 2002, 42: 407
[11] Che C S, Lu J T, Kong G, et al. Role of silicon in steels on galvanized coatings [J]. Acta Metall. Sin. (Engl. Lett.), 2009, 22: 138
[12] Thess A, Votyakov E V, Kolesnikov Y. Lorentz force velocimetry [J]. Phys. Rev. Lett., 2006, 96: 164501
[13] Thess A, Votyakov E, Knaepen B, et al. Theory of the Lorentz force flowmeter [J]. New J. Phys., 2007, 9: 299
[14] Wegfrass A, Diethold C, Werner M, et al. A universal noncontact flowmeter for liquids [J]. Appl. Phys. Lett., 2012, 100: 194103
[15] Wang X D, Kolesnikov Y, Thess A. Numerical calibration of a Lorentz force flowmeter [J]. Meas. Sci. Technol., 2012, 23: 045005
[16] Minchenya V, Karcher C, Kolesnikov Y, et al. Calibration of the Lorentz force flowmeter [J]. Flow Meas. Instrum., 2011, 22: 242
[17] Hernández D, Boeck T, Karcher C, et al. Numerical calibration of a multicomponent local Lorentz force flowmeter [J]. Magnetohydrodynamics, 2017, 53: 233
[18] Viré A, Knaepen B, Thess A. Lorentz force velocimetry based on time-of-flight measurements [J]. Phys. Fluids, 2010, 22: 125101
[19] Jian D D, Karcher C, Xu X J, et al. Development of a non-contact electromagnetic surface velocity sensor for molten metal flow [J]. J. Iron Steel Res. Int., 2012, 19: 509
[20] Jian D D. Flow measurement in liquid metals using Lorentz force velocimetry—Laboratory experiments and numerical simulations [D]. Ilmenau: Ilmenau University of Technology, 2013
[21] Dubovikova N, Kolesnikov Y, Karcher C. Experimental study of an electromagnetic flow meter for liquid metals based on torque measurement during pumping process [J]. Meas. Sci. Technol., 2015, 26: 115304
[22] Kolesnikov Y, Karcher C, Thess A. Lorentz force flowmeter for liquid aluminum: Laboratory experiments and plant tests [J]. Metall. Mater. Trans., 2011, 42B: 441
[23] Hernández D, Boeck T, Karcher C, et al. Numerical and experimental study of the effect of the induced electric potential in Lorentz force velocimetry [J]. Meas. Sci. Technol., 2018, 29: 015301
[24] Stelian C. Calibration of a Lorentz force flowmeter by using numerical modeling [J]. Flow Meas. Instrum., 2013, 33: 36
[25] Wang X D, Thess A, Moreau R, et al. Lorentz force particle analyzer [J]. J. Appl. Phys., 2016, 120: 014903
[26] Miranda R, Barron M A, Barreto J, et al. Experimental and numerical analysis of the free surface in a water model of a slab continuous casting mold [J]. ISIJ Int., 2005, 45: 1626
[27] Deng X X, Xiong X, Wang X H, et al. Effect of nozzle bottom shapes on level fluctuation and meniscus velocity in high-speed continuous casting molds [J]. J. Univ. Sci. Technol. Beijing, 2014, 36: 515
[27] (邓小璇, 熊 宵, 王新华等. 水口底部形状对高拉速板坯连铸结晶器液面特征的影响 [J]. 北京科技大学学报, 2014, 36: 515)
[28] Felten F, Fautrelle Y, Du Terrail Y, et al. Numerical modelling of electromagnetically-driven turbulent flows using LES methods [J]. Appl. Math. Modell., 2004, 28: 15
[29] Wang X D, Fautrelle Y, Etay J, et al. A periodically reversed flow driven by a modulated traveling magnetic field: Part I. Experiments with GaInSn [J]. Metall. Mater. Trans., 2008, 40B: 82
[1] 刘力恒,车淳山,孔纲,卢锦堂,张双红. 热镀Zn-0.2%Al镀层中Fe-Al抑制层失稳机理及其热力学评估*[J]. 金属学报, 2016, 52(5): 614-624.
[2] 定巍 唐荻 江海涛 黄伟. 热镀锌TRIP钢中马氏体对力学性能的影响[J]. 金属学报, 2010, 46(5): 595-599.
[3] 乐启炽; 崔建忠 . 三元系彩色热镀锌镀液热力学性质[J]. 金属学报, 2006, 42(11): 1182-1186 .
[4] 邓康; 任忠鸣; 陈坚强; 蒋国昌 . 水冷坩埚熔炼的电磁悬浮特性[J]. 金属学报, 1999, 35(7): 739-742 .